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ADVISORY PANEL ON CONSUMER PRICES – TECHNICAL 

Guidelines for selecting metrics to evaluate classification in price statistics production 

pipelines 

Purpose 

1. Even with well-trained machine learning (ML) classifiers on high quality data it is highly 

unlikely these classifiers are going to be able to get the classification of every price quote 

correct all the time. If we are to include these ML classifier in price statistics production 

pipelines, we must therefore understand how they might affect the output price index to 

minimise the impact of classifier errors on the final index. One aspect of this is to select 

appropriate metric(s) to measure and monitor classifier performance over time. There are 

numerous metrics to quantify classifier performance on a dataset, each with different 

properties for evaluating various aspects of classifier performance given certain conditions. 

This paper takes a theoretical approach to set out initial guidelines for how we should 

measure classifier performance in price statistics production pipelines to minimise error on 

the price index. This will help inform which classification methods are suitable for use, in the 

context of price index production pipelines using alternative data sources and provide 

direction for future development on this 

Actions 

2. Members of the Panel are invited to: 

a) comment on the suitability of these guidelines 

b) comment on direction of future work 

Introduction 

3. The Prices Alternative Data Sources project is developing a prototype pipeline to produce 

price indices from web-scraped and point-of-sale scanner price data. A crucial part of this 

pipeline is the development of methods to automatically classify individual price quotes 

according to the COICOP and ONS item level classification. There are numerous methods 

available to classify items to COICOP with each method capable of being optimised through 

hyperparameter tuning to a problem.  

4. There are also numerous metrics that measure some aspect of how effective a classifier is 

working on a dataset. To assess different classification methods’ performance in the pipeline 

and to monitor effectiveness over time, we need to decide which metrics to use for our 

particular data and purpose. There are numerous well-established metrics for evaluating 

classification performance.  This paper evaluates a selection of the most commonly used 

metrics and summarises this in the guidance presented here for choosing an appropriate 

metric for building and evaluating classifiers in price index production pipelines, such that 

the classifier avoids biasing the final index.  

5. This guidance provides an initial approach based upon theoretical considerations. As 

research and development of classification methods is working alongside development of 

these guidelines, they can be used to guide the ongoing research toward the more promising 

classification methods. Findings and experience gained developing classification methods 

can also feed back into these guidelines.  
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6. Further work is required to test and develop these guidelines using empirical results. This 

work will show how optimising a classifier’s performance for different evaluation metrics 

affects the quality of the output price index for a data source, given different properties of 

the data and may involve both synthetic and collected price data. Therefore, this work will 

provide a more complete basis using both theory and empirical results for decisions around 

classification, such as selecting classification methods, optimising hyper parameters and 

monitoring performance over time.  

7. We will then be able to use this to select the most appropriate classification methods for a 

given data source and ONS item category. This will give us a final recommendation on which 

method(s) to implement in the pipeline. We are aiming to have these recommendations 

ready to present to the panels in the beginning of 2020, in line with the milestones set out in 

APCP-S(19)04 Alternative data sources roadmap. 

Recommendations 

8. For more information about the classification metrics summarised in this section, please see 

Annexes A to E of this paper. For readers unfamiliar with classification metrics, it is 

recommended to read the Annexes first before reading this section.  

Binary classification 

9. For binary classification we can derive the following general strategies.  

a) Where distributions of our classes are not stable, there is no real advantage to using Fβ – 

score over balanced accuracy, unless positive class prevalence is stable and low. 

b) With stable and low positive prevalence, Fβ – score is preferred as it works well as a 

metric to measure correct classification of the positive labels.  

c) With stable and balanced or high prevalence, balanced accuracy is preferred as it works 

well as a metric to measure correct classification of the positive labels.  

d) In some cases, where it is necessary to emphasise positive or negative errors and where 

distributions are stable, we might want to consider Fβ – score with balanced and high 

prevalence data as we can set β to emphasise positive and negative errors. However, 

balanced accuracy is generally better at evaluating performance for balanced and high 

prevalence data. 

e) Table 1 summarises the recommendations given particular properties of the data (for 

example, if the prevalence of the data is stable over time) indicated in different columns. 

Recommendations for how to measure performance are grouped by row with a brief 

explanation, for example, what metrics to use, should you consider averaging etc. For 

each of these it is divided into a what and why section. ‘what’ gives you options, ‘why’ 

provides a brief explanation of the reasoning behind each and recommends a single 

option if there is more than one. 
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Table 1: Binary classification summary table 

  ARE PREVALENCE AND/OR PRICE DISTRIBUTIONS STABLE OF THE DATA STABLE? 

   Yes Only prevalence Only price distribution No 

METRIC / 
VISUALISATION 

What we can 
use 

Fβ– score/PR -space 
 
Balanced accuracy /ROC space 
 

Balanced accuracy 
/ROC space 
 
Fβ – score/PR space 
for low prevalence as 
alternative to 
weighted balance 
accuracy 
 

Fβ – score/PR space 
 
Balanced accuracy/ROC space 

Balanced accuracy/ROC 
space 

Why you would use 
a measure 

For low prevalence we use Fβ – 
score. 
 
 
Otherwise we use balanced 
accuracy, for high prevalence and 
balanced data. 
In some cases, we might consider 
Fβ – score where we want to 
minimise false positives 
(emphasise precision) or false 
negatives (emphasise recall) 
 

Fβ – score is better 
with low prevalence 
datasets.  
 
Otherwise use 
balanced accuracy 

Fβ – score allows us to choose to 
minimise false positives (emphasise 
precision) where price distributions 
of classes are different or false 
negatives (emphasise recall) where 
price distributions of classes are 
similar 
 
However, if we decide to set β = 1 
or close to 1 then we may consider 
balanced accuracy as there is no 
benefit to Fβ – score, especially with 
high prevalence or balanced data 

Results with balanced 
accuracy are comparable 
across datasets so we 
can monitor 
performance over time 
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PREVALENCE 
WEIGHTING 

Should we weight? Yes No No No 

Why? We should only weight where we 
use average Fβ – score as   
prevalence is unlikely to change, 
so we can account for different 
size classes and see class 
breakdowns.  
 
Otherwise it should not be used 
as balanced accuracy is 
prevalence insensitive. 

We use balanced 
accuracy is prevalence 
insensitive and we are 
not using averaged  
Fβ – score 

Unstable prevalence means these 
will change if used 

Unstable prevalence 
means these will change 
if used 

AVERAGING What to use Macro if classes are unbalanced.  
 

N/A N/A  N/A 

Why Class prevalence is stable, so we 
can use weights to correct for 
class imbalance when using 
averaged F-score 
 
Balanced accuracy does not 
require averaging. 

Balanced accuracy is 
macro average of 
recall for binary 
problems 
 
Not using average F-
Score 
 

Not using average F-Score 
 

Balanced accuracy is 
macro average of recall 
for binary problems 

β What value to pick? Set β depending on how often we 
expect to see false negative or 
false positive errors. 

1 Set β depending on how often we 
expect to see false negative or false 
positive errors. 

n/a 

Why As distribution is stable we can 
tune our metric to reduce the 
impact of errors 

Provides the best 
compromise as 
distributions are 
unstable. 
 

As distribution is stable we can tune 
our metric to reduce the impact of 
errors 

n/a for balanced 
accuracy 
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Multiclass classification 

10. For multiclass classification we can derive some general strategies.  

a) We use macro averaging with prevalence weights to correct for unbalanced classes if 

prevalence is stable as we can see class breakdowns and we know any class imbalance 

will not change over time, so we can weight appropriately.  

b) Where it is not stable we have to use micro averaging as any prevalence weights we use 

will not work with future datasets.  

c) Where distributions are stable over time we can inspect these, then set β appropriately 

to put emphasis on reducing false positive or false negatives – see errors for guidance on 

how to choose.  Therefore, we choose Fβ– score otherwise we will not have the option to 

do this. One caveat; if you decide the best strategy is to set β = 1, you may also use 

average recall as a metric, which would be better in situations where true negatives are 

important. This is summarised in the table below. 
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Table 2: Multi-class classification summary table 

  ARE PREVALENCE AND/OR PRICE DISTRIBUTIONS STABLE? 

  Yes Only prevalence Only price distribution No 

METRIC / 

VISUALISATION 

What Fβ– score/PR -space 

 

Or, where β = 1 Av Recall/ROC 

space 

Fβmicro – score /PR -space 

Av Recall/ROC space 

Use unweighted Fβ – score with 

PR space 

 

Fβ– score/PR -space 

Av Recall/ROC space 

Why? We can choose to minimise 

false positives (emphasise 

precision) or false negatives 

(emphasise recall) 

 

If we choose to balance these 

with β = 1 then choose Av 

Recall If we care about true 

negatives 

If we care about true negatives, 

we prefer average recall, 

otherwise use Fβmicro – score 

We can choose to minimise 

false positives (emphasise 

precision) or false negatives 

(emphasise recall) 

If we care about true negatives, 

we prefer average recall, 

otherwise use Fβmicro – score 

PREVALENCE 

WEIGHTING 

What Yes Yes No No 

Why? Prevalence is unlikely to 

change, so we can account for 

different size classes and see 

class breakdowns 

Prevalence is unlikely to 

change, so we can account for 

different size classes and see 

class breakdowns 

Unstable prevalence means 

these will change if used 

Unstable prevalence means 

these will change if used 

AVERAGING What Macro Macro Micro Micro 

Why Class prevalence is stable, so we 

can use weights to correct for 

class imbalance 

Class prevalence is stable, so we 

can use weights to correct for 

class imbalance 

Micro averaging is not 

influenced by prevalence and 

we can’t use prevalence-

weighted macro as prevalence 

is not stable.  

 

Micro averaging is not 

influenced by prevalence and 

we can’t use prevalence-

weighted macro as prevalence 

is not stable.  
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β What? Set β depending on how often 

we expect to see false negative 

or false positive errors. 

 

1 Set β depending on how often 

we expect to see false negative 

or false positive errors. 

 

1 

Why As distribution is stable we can 

tune our metric to reduce the 

impact of errors 

Provides the best compromise 

if distributions are unstable. 

 

As distribution is stable we can 

tune our metric to reduce the 

impact of errors 

Provides the best compromise 

if distributions are unstable. 
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Future work 

1. The guidance presented here can be used to develop classifiers using real price data to 

maximise the quality of the final price index for that data source and ONS item category. 

These guidelines will be subject to ongoing development and refinement as the research 

phase progresses. Directions for further work with regards to classification metrics are listed 

below.  

2. These work streams will allow us to develop and select the most appropriate classification 

method(s) for a given data source and ONS item category. We will then be able to make 

recommendations on method(s) to implement in the pipeline as well as how to assess the 

ongoing performance of the classification module in the pipeline. We are aiming to have 

these recommendations ready to present to the panels in the beginning of 2020, in line with 

the milestones set out in APCP-S(19)04 Alternative data sources roadmap. 

Quantifying effect of errors on price index  

3. Using fully labelled real data and data with synthetic prices and labels, it will be possible to 

simulate a classifier achieving particular performance levels for different metrics on different 

datasets. For example, take a dataset classified with a balanced accuracy of 0.9. It would be 

possible to calculate the index for every possible set of assigned labels that would give a 

balanced accuracy of 0.9, giving every possible index for this dataset. Variance and standard 

errors for the index can be calculated, given a defined level and metric and the quality of the 

indexes can be assessed. This allows us to judge what is the most appropriate metric and 

level for an acceptable index quality level. This can be repeated for different distributions of 

price for different classes in a data set to investigate how the quality of the index may be 

affected when the properties of the price data change over time. Meaning that we can 

develop proper tests for the data and classification step in the pipeline to ensure the quality 

of the final price index with each delivery of new data when the system is in continuous 

production. 

Developing cost functions for classification 

4. In price data, not all items have equal expenditure. If this item is classified incorrectly, then 

this may have a substantial impact on the index and/or limit the use of weighted index 

methods. To account for this, it is possible to use a cost function to determine the cost of 

classifying each product correctly or incorrectly. A cost function could be constructed from 

expenditure weights or estimates of expenditure where explicit weights are not available. 

This can be used to assess classification quality in place of counts of observations classified 

as true and false positives and negatives. 
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Guidance on manual checking and re-training of classifiers 

5. Classifiers will need to be periodically retrained, depending on properties of the data such as 

product churn and price and feature stability. Classifier performance on new products needs 

to be comparable to existing products to avoid biasing the index. This means that classifier 

performance needs to be manually assessed on a sample of new items over time. If price 

distributions of True and False labelled items change, this may mean that the classifier needs 

retraining as the impact of false positives and negatives may have changed. Therefore, there 

is a requirement to investigate methods of how often performance needs to be assessed 

and how often classifiers need to be re-trained, every month, 3 months, when certain 

performance threshold drop below a defined level? Since it is likely that the data is too large 

to be completely manually checked, a suitable sampling method is required to gain an 

accurate estimate of classifier performance. 

Edward Rowland 
Methodology, Office for National Statistics - UK 
May, 2019 
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Annex A – Classification definitions 

Binary (two class) classification 

1. This is where we have two classes we want to separate, for example it may be observations 

we want to include in the index for an ONS item (for example, laptops) and observations 

that we do not want to include in the index (for example, laptop bags). This is the most 

common textbook classification task and most classification metrics apply to this. See 

chapter 2 and 3 in  (Flach, 2012) for a more detailed overview of classification and machine 

learning.  

Ground truth 

2. In COICOP5 and ONS item definitions we have a defined set of labels we need to classify our 

observations to, meaning we have a supervised classification problem. We take the ONS 

item definitions as our ground truth and require a correctly labelled dataset that reflects 

this. With respect to a chosen category, we define two labels to provide our ground truth. 

Labelled Positive – an observation that should be included in a chosen class (ONS item 

definition) 

Labelled Negative – an observation that should not be included in a chosen class (ONS item 

definition) 

Classifier judgements 

3. Then, we run the data through our classifier and get a set of classification judgements. These 

are defined in a similar way to labelled observations.  

Classified Positive – an observation that is classified in a chosen class (ONS item definition) 

Classified Negative – an observation that is not classified in a chosen class (ONS item 

definition) 

Correctly and incorrectly classified observations 

4. For each observation in our dataset, we compare the classifier’s judgement to the label or 

ground truth for a particular class and we can determine four distinct categories we can 

place this judgement in.  

True positive – An observation both labelled and classified as positive so is correctly included 

in a class 

True negative – An observation both labelled and classified as negative so is correctly 

excluded from a class 

False positive – An observation labelled negative and classified as positive so is incorrectly 

included in a class 

False negative – An observation labelled positive and classified as negative so is incorrectly 

excluded from a class 
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5. True positive and true negatives are our two types of correct values and false positive and 

false negative are our incorrect values. False positive and false negative are type I and type II 

errors respectively. Typically, we show these values in a confusion matrix below, along with 

the marginal sum totals of labelled positive and negative observations and classified positive 

and negative.  

Annex A -  Table 1: Binary confusion matrix 

Label 
Classified  

Positive Negative Truth 

Positive True +ve False -ve 
(Type II) 

Total 
labelled +ve 

Negative False +ve 
(type I) 

True -ve Total 
labelled -ve 

Classified 
as 

Total 
classified +ve 

Total 
classified -ve 

Total 
observations 

6. This confusion matrix is what you will see for a binary classification – where there are two 

groups. For multi-class classification, you can create a much larger matrix, or you can show 

the above matrix for a single class compared to all others in a one vs rest comparison.  
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Multiclass classification  

7. To measure performance across an entire dataset with multiple classes, if an observation 

has been placed into the correct class, this is a correct classification, where it has been 

placed into the incorrect class, it is an error. There is no distinction between True and False 

positives and True and False negatives as there are as many different types of error as there 

are incorrect classes. Since most metrics Annex B – Classification metrics use these two 

types of correct and incorrect classifier judgements, they are not defined in terms of 

multiple classes. This limits the metrics available for assessing multiclass classification in this 

confusion matrix (table 2) to accuracy and error. If we wish to use a wider range of metrics, 

we need to compute them on a class-by-class basis in a one verses rest approach described 

below. We can still produce a confusion matrix for multiclass classification as below, in this 

example we show four classes. 

Annex A - Table 2: Multiclass confusion matrix 

Label 

Classified  

Class A Class B Class C Class D Truth 

Class A Correct Incorrect Incorrect Incorrect Total labelled 
Class A 

Class B Incorrect Correct Incorrect Incorrect Total labelled 
Class B 

Class C Incorrect Incorrect Correct Incorrect Total labelled 
Class C 

Class D Incorrect Incorrect Incorrect Correct Total labelled 
Class D 

Classified as Total classified 
Class A 

Total classified 
Class B 

Total classified 
Class C 

Total classified 
Class D 

Total 
observations 
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One-versus-rest  

8. To use a wider range of metrics in multiclass classification, one method is to reduce the 

complex confusion matrix into multiple smaller, matrices each akin to a binary classification 

problem. We can do this by comparing each individual class against all other classes in a one-

versus-rest matrix. This allows us to see the performance of the classifier for each individual 

class using the metrics in Annex B but does not give us an idea of overall classifier 

performance. In the confusion matrix (Table 3) below we take Class A to be the class we are 

assessing so will be our positive class and class B, C and D we collapse into the negative class. 

Annex A - Table 3: One-versus-rest 

Label 

Classified  

Positive 
(Class A)  

Negative 
(Class B, C, D) 

Truth 

Positive 
(Class A) 

True +ve False -ve (Type II) Total labelled 

+ve (Class A) 

Negative 
(Class B, C, D) 

False +ve (type I) True -ve Total labelled -
ve 

(Class B, C, 
D) 

Classified as 
Total classified 

+ve (Class A) 

Total classified -

ve (Class B, C, 
D) 

Total 
observations 

 

Total observations across classes  

9. A One-versus-rest confusion matrix only shows classifier performance for a single class. 

Therefore, to assess performance over all classes requires a matrix for each class in the data 

which is cumbersome and does not give an overview of classifier performance over all 

classes. To get metrics for overall performance, we sum the true and false positive and 

negative classifications for each classes’ one-versus-rest confusion matrix together. This 

gives an overall confusion matrix (table 4). We define each value in our confusion matrix as 

below. Where C is the observation category (true positive, false positive etc.) and n is the 

number of different classes.  

𝑡𝑜𝑡𝑎𝑙 𝐶 =  ∑ 𝐶𝑐𝑙𝑎𝑠𝑠 𝑖

𝑛

𝑖=1

 

This means that with four classes (A,B,C,D) to get the overall true positive value, we first 

compute the true positives for each class individually  in a one-versus-rest comparison, say 

we get (A = 4, B=7, C=2 and D=5) then we sum these together to get the overall true positive 

count of 18 for all classes. This is repeated for false positive as well as true and false 

negatives to get the overall matrix. 
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Annex A - Table 4: Overall confusion matrix 

Label 

Classified  

Positive  Negative  Truth 

Positive 
 

Total true +ve Total false -ve  
(Type II) 

Total labelled +ve  

Negative Total false +ve 
(type I) 

Total true -ve Total labelled -ve 
 

Classified as 
Total classified +ve  Total classified -ve 

Total 
observations 

 

Prevalence and balanced data 

10. Another key concept is balance; do the classes in the data have approximately the same 

number of observations? This is measured by prevalence, calculated by dividing the number 

of observations in a class by the total number of observations in all classes. In a balanced 

dataset, this will approximate 1/n for all classes, for n classes. For example, a balanced 

binary dataset will give a prevalence of 0.5. If a dataset contains 4 classes, the prevalence 

will be 0.25 for each class if the dataset is balanced.  

𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 =  
𝐿𝑎𝑏𝑒𝑙𝑙𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 

 

Annex B – Classification metrics 

Accuracy 

1. Perhaps the most obvious way of measuring classifier performance is accuracy. Accuracy 

tells us of all the observations in a dataset, how many are classified correctly? This is given as 

a ratio or a percentage and can be derived from the correct (true positive and true negative 

classifications) as shown below. Given a balanced dataset, a higher accuracy score means 

that a classifier is making more correct classifications, though accuracy runs into issues when 

used with unbalanced data (Akosa, 2017) as with high prevalence data, a high accuracy score 

does not necessarily mean high performing classifier. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

𝑇𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
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True positive rate/Recall 

2. Recall or the true positive rate, gives the ratio of the observations that have been correctly 

classified as positive over the total of observations that are labelled positive found by 

summing the true positive and false negative observations., given below. Or, when an 

observation should be classified as positive, how often is it classified positive? In Bayesian 

probability, true positive rate is the conditional probability that a labelled positive value is 

classified positive. True positive rate gives a measure of how well your classifier is replicating 

the labelled positive class in its classified positive judgements as a high true positive rate will 

mean maximising true positives and minimising false negatives. In an equivalent way, it is 

possible to compute the true negative rate, we just replace the true positive with true 

negative and false negative with false positive 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 

False positive rate  

3. This gives the ratio of the observations that have been incorrectly classified positive over the 

total of observations that are labelled negative calculated by summing false positive and 

true negative observations. Or, when an observation should be classified negative, how 

often is it classified positive, given below.  False positive rate measures how well your 

classifier avoids mislabelling false values as true.  So, a lower false positive means the 

classifier minimises the number of false positives and maximise the true negatives. 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Precision  

4. Precision is like the true positive rate, except it uses the false positive instead of false 

negative to give the total classified positive in the denominator meaning it gives the true 

positives over total classified true. Or, for a classified positive observation, how likely is this 

observation labelled positive? Precision can also be considered the Bayesian posterior 

probability that an observation is labelled positive, given that it has been classified as 

positive.  So, a classifier with a high precision will have a high number of true positives with a 

low number of false positives. The main difference between precision and recall/true 

positive rate is precision is more focused on the certainty if the predictions for the true class 

are correct, rather than how much of the labelled true class are predicted true by the 

classifier. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
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F-score  

5. F-score is the harmonic mean of recall and precision. It is useful as often, with real-world 

problems, a classifier needs to make a compromise between reducing false positives at the 

expense of increasing false negatives, or vice versa. The F-score tells us how well the 

classifier makes this compromise. It is computed from the harmonic mean as if one of 

precision or recall scores is 0, F-score would also be zero indicating a poor classifier. F-score 

is calculated as below. 

𝐹 = 2 ∗ (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
)  

Weighted F-Score 

6. We can change the relative importance of recall over precision by adding in a weight 

variable to the equation. This means if a price index can tolerate false positives over false 

negatives, we should weight recall as more important than precision as a high recall 

generally means a reduction in false negatives. If the price index can tolerate false negatives 

over false positives, then we can reduce the importance of recall over precision. It is 

important not to confuse weighted F-score with F-score from macro averaged precision and 

recall, which can include specific class weights. So, to avoid confusion a weighted F-score is 

referred to as Fβ-score where β is the weight. This means an unweighted F-score is 

equivalent to an F1-score as it is equal to using a weight of 1 in the equation below.  

 

𝐹𝛽 = (1 + 𝛽2) ∗ (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
) 

7. One feature of the Fβ-score (including the unweighted F) is that it is not affected by the true 

negative rate. (Powers, 2015) discusses limitations of the F-score which includes this 

observation. Though whether this is of any concern depends on the problem a classifier is 

trying to solve as this makes F-score ideal for needle-in-a-haystack problems.  A needle-in-a-

haystack type of problem where the number of labelled negative observations is much 

greater than the number of positive observations i.e. prevalence is low, is an ideal use case 

for Fβ-score. An example of this is say we want to find all of the different banana products a 

supermarket sells. Most products are not going to be bananas, therefore the negative class 

(not a banana) is much greater than the positive class (a banana).    This is because 

performance, with respect to this use-case, rarely depends upon the negative class but how 

well the classifier does at correctly picking out the positive class. If this is not the case, a 

different metric would likely provide a better measure of performance. 
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Balanced accuracy 

8. Balanced accuracy is the arithmetic mean of the true positive rate and the true negative rate 

(positive and negative recall). Unlike Fβ-score it considers the classifiers ability to identify 

true negatives. It is termed balanced accuracy as it is equivalent to accuracy for a balanced 

dataset, but it is much better at correctly identifying poor performing classifiers when the 

data is unbalanced. For example, if we take a naïve classifier that labels all observations as 

true with a binary classification problem on a dataset with a prevalence of 0.9. The accuracy 

of this (poor) classifier would be 0.9 as it would correctly label the true observations that 

make up 90% of the data and only label 10% of the data incorrectly, as just 10% of the 

observations are false. However, balanced accuracy will be 0.5. As the naïve classifier 

correctly identifies all the true observations (true positive rate = 1) but incorrectly labels all 

false observations as true (true negative rate = 0). Following the equation below, the sum of 

these divided by two gives 0.5. 0.5 is interpreted the same as chance. This means with 

balance accuracy, we correctly identify our naïve classifier as being bad at solving this 

problem, but from accuracy we might incorrectly conclude it is good at solving this problem. 

Hence balance accuracy is preferred.  This also provides a useful property of balanced 

accuracy in that it gives consistent measures across datasets with different prevalence 

scores.   

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑐𝑎𝑙𝑙) + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑐𝑎𝑙𝑙)

2
)  

9. It is worth noting here that balanced accuracy is just the average recall for binary 

classification. Average recall is defined later in the section on Macro averages. The rest of 

this document refers to average recall and balanced accuracy interchangeably. 
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Annex C: Averaging methods for multiclass classification 

1. The metrics in Annex B are defined for binary classification, in this section they are expanded 

for use in multiclass classification using two different methods; micro and macro averages. 

Micro average metrics are computed from the overall confusion matrix containing the sum 

total of the true and false negatives and positives for each class as in the Total observations 

across classes section. Then we compute the metrics, (recall, precision etc.) to assess the 

classifier.  For the macro average, we compute the metric for each individual classes’ one-

versus rest confusion matrix as in Annex A: One-versus-rest, then take the average of each 

individual classes’ metric. For macro averaging we can also define class weights to give a 

weighted macro average. Steps to compute both are shown below.  

 

Micro average 

- Step 1: Compute the one-versus-rest confusion matrices for each class 

- Step 2: Compute the overall confusion matrix by summing the observation types (true 

and false positives and negatives) 

- Step 3: Calculate the metrics from this overall confusion matrices 

Macro average 

- Step 1: Compute the one-versus-rest confusion matrices for each class 

- Step 2: Compute metrics for each individual classes’ one-versus-rest confusion matrix 

- Step 3: Calculate the overall metrics by averaging the metrics for each class, weighing 

the average by class if required. 

 

2.  The difference in computing micro and macro averages is do we sum up the different 

observation types for all our classes, then compute our metrics. Or, do we compute the 

metrics for each class and take the average of these metrics.  

 

3. These different methods have different properties. Macro is useful as you can see how each 

individual class contributes to the overall classifier performance, so it is easy to see if good 

overall performance is consistent across classes or are there some classes where the 

classifier is weak. But with unbalance classes, it treats all classes the same so does not 

consider the size of the class relative to the others. This means that classifying an 

observation in a smaller class correctly or incorrectly has a greater effect on the metric than 

classifying and observation in a larger class. Whether this is preferable behaviour depends 

on the use case. Weighted macro average offers a way to tune this behaviour to the use case 

if emphasizing smaller classes in not preferable or importance of each class needs to be 

disassociated with size in other ways. 

 

 

4.  Micro accounts inherently accounts for unbalanced classes by putting all classes together in 

an overall confusion matrix to calculate metrics. Therefore, the contribution to the overall 

micro averaged metric of any individual observation’s correct or incorrect classification is the 

same as any other. Meaning that micro averaging is not sensitive to class prevalence within 

the data and gives it the useful property of providing comparable metrics across different 

datasets. 
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 Micro average 

5. In micro averaging, recall/true positive rate and precision are defined as with binary 

classification, except the total observations from each class’s one-verses-rest comparison for 

each category are used. Therefore, the first order metrics become those defined below. 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒𝑚𝑖𝑐𝑟𝑜 =  
𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑡𝑖𝑣𝑒 + 𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 =  
𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑡𝑖𝑣𝑒 + 𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
 

6. The second order metrics are defined as follows. Recall and true positive rate are equivalent, 

and so is true negative when labelled and classified positive and negative categories are 

inverted. 

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑚𝑖𝑐𝑟𝑜 = (
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒𝑚𝑖𝑐𝑟𝑜 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒𝑚𝑖𝑐𝑟𝑜

2
)  

𝐹𝛽 𝑚𝑖𝑐𝑟𝑜 = (1 + 𝛽2) ∗ (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜

(𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜) + 𝑟𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜
) 

Macro average  

7. Instead of taking the categorical observation counts for each class from the one-verses-rest 

comparisons, each of the first order metrics are calculated on a class-by-class basis, then the 

arithmetic average of these are taken. So, precision and recall are defined as follows, with 

the macro F-score then defined by these in turn. 

𝑟𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜 =  
∑ 𝑟𝑒𝑐𝑎𝑙𝑙𝑐𝑙𝑎𝑠𝑠 𝑖

𝑛
𝑖=1

𝑛
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 =  
∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠 𝑖

𝑛
𝑖=1

𝑛
 

𝐹𝛽 𝑚𝑎𝑐𝑟𝑜 = (1 + 𝛽2) ∗ (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜

(𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑎𝑐𝑟𝑜) + 𝑟𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑐𝑟𝑜
) 

8. Notice that Balanced accuracy is an expression of average recall for two (binary) classes, 

therefore there is no need to define macro balanced accuracy. Consequently, balanced 

accuracy and average recall are used interchangeably.   

Weighted macro averaging 

9. As first order metrics are given by class, we can define class weights to make sure our 

classifier performs best on the most important classes. A common weighting method is 

relative class prevalence, so the classifier performs best on the most frequently occurring 

classes, described here. Definitions are as follows; xclass as the number of observations 
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labelled as in that class, 𝑥̅ as the mean number of observations in each class to compute a 

weight, wclass by the following. 

𝑤𝑐𝑙𝑎𝑠𝑠 =  
𝑥𝑐𝑙𝑎𝑠𝑠 𝑖

𝑥̅
 

10. Then compute the weighted average metrics as the following. 

𝑟𝑒𝑐𝑎𝑙𝑙𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑎𝑐𝑟𝑜 =  
∑ 𝑤𝑐𝑙𝑎𝑠𝑠 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙𝑐𝑙𝑎𝑠𝑠 𝑖

𝑛
𝑖=1

𝑛
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑎𝑐𝑟𝑜 =  
∑ 𝑤𝑐𝑙𝑎𝑠𝑠 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠 𝑖

𝑛
𝑖=1

𝑛
 

𝐹𝛽 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑎𝑐𝑟𝑜 = (1 + 𝛽2) ∗ (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑎𝑐𝑟𝑜 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑎𝑐𝑟𝑜

(𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑎𝑐𝑟𝑜) + 𝑟𝑒𝑐𝑎𝑙𝑙𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑎𝑐𝑟𝑜
) 

Annex D – Visualising classifier performance 

Receiver operating characteristics space 

1. We can take two metrics, the true positive rate (Recall) which we want to maximise and 

false positive rate that we want to minimise to zero and plot these as below in figure 1. This 

we call receiver operating characteristic (ROC) space. In ROC space, the closer a classifier is 

to the top left means the closer its performance is to a true positive rate of 1 and a false 

positive rate of 0 which would indicate a perfect result. To give an example, several example 

classifiers are plotted in ROC space, labelled A- E. In addition, we label where naïve (where 

all observations are given the same label) and uniform random classifiers (where for binary 

classification half the observations are given one label and half the other, allocated at 

random). These give a minimum benchmark performance, indicated by the solid blue line in 

figure 1. In our example classifiers, A gives the best false positive rate, while D gives the best 

true positive rate. B and C offer good compromises between these so could still be useful for 

us. E is dominated by the other classifiers as it has inferior performance compared to the 

others on either of these metrics. Therefore, E is ignored as when a classifier is dominated, it 

is never going to give us the best compromise no matter the use-case.   

2. To help further in assessing classification quality, we can use isolines on our plot. These 

show the points on the plot where the classifier achieves a particular value for a metric. On 

figure 1 below, we show accuracy isolines at 0.1 intervals. The isoline shows all points in ROC 

space where a classifier would have a certain accuracy. Isolines for other metrics can be 

shown also. However, where we have unbalanced data the accuracy isolines shift, so we use 

balanced accuracy (average recall – the orange lines) instead as this is invariant to class 

prevalence and is equivalent to accuracy for balanced classes. We can also see that a naïve 

classifier is as accurate if not more accurate than our ‘smart’ classifiers on unbalanced data. 

This is because with a prevalence of 0.9 the naïve true classifier scores 0.9 accuracy as it 

correctly labels 90% of the observations as 90% are true observations. With 0.1 prevalence, 

the naïve false classifier performs similarly well for the same reason. Therefore, balanced 

accuracy is preferred when using unbalanced data and demonstrates how ROC space with 

appropriate isolines provides a useful tool to visualise classifier performance. 
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Annex D - Figure 1: ROC space plots 
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3. We can see the classifier B gives the best compromise between true and false positive rates 

as it has the highest balanced accuracy/average recall; the operative word being 

compromise. We should not discount the other classifiers as if we are sensitive to false 

positive rates, we may want to choose A, if we are tolerant of them we may want to choose 

C or D, it depends on use case. E however is poor compared to the other classifiers, in no 

situation will it offer the best compromise depending on if we want to minimise false 

positives or negatives. This is termed dominance, so we say E is dominated by the other 

classifiers. 

Precision-recall space 

4. Precision and recall are two other metrics that can be used to assess a classifier. While it is 

possible to have perfect precision across all levels of recall, this rarely happens in real world 

use cases, so a compromise between these is made.  Precision-Recall (PR) space can be used 

to visualise this compromise in an equivalent way to the ROC space plot with recall on one 

axis and precision on the other. As we aim to maximise both precision and recall, the ideal 

classifier is at the top right. A useful property of PR space is that Fβ-score is the weighted 

harmonic mean of both precision and recall, so we can easily plot isolines for our Fβ-score to 

get a direct measure of how well the classifier is making the compromise. The precision of 

the uniform random and naïve classifiers is the same, equal to the prevalence, but the recall 

is different, we take the baseline performance of precision as equal to the prevalence of the 

labelled positive class across all recall values. This is represented as a horizontal line across 

PR space, parallel to the recall axis, intersecting the precision axis at our labelled positive 

prevalence value. 

5. Figure X plots the PR space using the same classifiers with the same true positive (recall) and 

false positive rates as with ROC in Figure 2. No classifier is below the blue line that indicates 

when performance is extremely poor. Again, B gives the best compromise between precision 

and recall, indicated by its proximity to the 0.9 F1-score isoline. C and D give us options if we 

can tolerate a lack of precision, and A improves precision slightly on B at a loss of recall.  

Where the prevalence of the data changes, so does the baseline performance. For majority 

positive (0.9 prevalence), the classifiers are compacted on the vertical axis making it difficult 

to make out which offers the highest precision. With majority negative data (0.1 prevalence) 

the classifiers are much more spread out against the vertical axis. Intuitively, this 

demonstrates it is harder to score more highly on precision when the dataset consists of 

labelled negative observations and more clearly shows the difference in performance for our 

classifiers. Therefore, PR space is an effective tool to use with low prevalence data, but not 

with high prevalence.  
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Annex D - Figure 2: PR space plots 
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Annex E – Assessing impact of classification errors 

1. It is extremely unlikely that we are going to have a classifier that makes no errors. Therefore, 

we have to take the view to build a classifier which minimises the impact of errors on a price 

index. We can examine what the potential impact of false positive and false negative errors 

might be in different situations to determine how best to build our classifier. This will 

depend on the price level and distribution of errors compared to the classified and labelled 

positive and negative observations, which we can investigate below. The exact pricing 

variable that will need to be investigated will depend upon the index methodology and so 

could be price relatives, unit price or others. In the examples in this section, price is referred 

to and should be interpreted as a catch all term for the relevant pricing variable for the index 

method being used. 

False positive errors 

2. False positive errors are observations that should not be including in a price index but have 

been incorrectly classified so that they are included. What needs to be checked is if their 

inclusion biases the index in some way. By comparing the price distribution of the labelled 

positive and classified positive distributions with the false positive errors to see if the 

distribution or the levels are different. If they are not, the likely impact of false positives will 

be minimal, shown in figure 1. If the level and/or distribution is different, then this will likely 

bias the index in some way.  
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Annex E - Figure 1: Where false positives impact on the index is (probably) minimal 

 
3. Figure 2, shows an example where the level of false positive errors are biasing the 

distribution of the classified positive observations so they are different to the labelled true 

distribution. This means that false positives may introduce bias into the index. 

Annex E - Figure 2: Where false positives level is (probably) affecting the index 

  

False negative errors 

4. False negative error is when the classifier incorrectly excludes an observation from the index 

that should be included. If false negatives are randomly distributed in price, then their 

exclusion will be unlikely to skew the distribution of classified true observations from the 

labelled true observations distribution. If they are not, then their exclusion might skew the 

classified true distribution away from the labelled true distribution. 

5. If the distribution of false negatives is similar to the labelled true and the true positive 

observations i.e. false negatives are a random sample of the labelled true observations. Then 

we do not have to worry about false negatives too much. They will have negligible effect in 

biasing the classified true observations as these will still have a similar distribution to the 

labelled true observations, assuming no false positives – shown in figure 3. 
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Annex E - Figure 3: Where false negative impact on the index is (probably) minimal 

 

 

6. If false negative distributions are different to the labelled true distributions then we do need 

to be concerned about the effect of false negatives on the index as this may cause this 

distribution of classified true to differ from the labelled true distributions which will bias the 

index, again assuming no false positives.  

Annex E - Figure 2: Where false negative distribution is (probably) affecting the index 

 

Multiclass classification 

7. Multiclass classification is more complex. One approach is to perform similar checks for each 

class in one-verses-rest comparisons, but the likelihood is that not every class will be 

affected by false negatives or false positives in the same way. If they are we can follow the 

same as binary classification, otherwise the requirement will be to balance performance for 

the different types of errors and choosing a metric accordingly.   

Annex F - Data representation and stability over time   

1. We must consider how representative our training data is of the real-world, including the 

stability of the data properties that might affect the price index. Domain knowledge and past 

data can be used to examine how the class has changed over time and get an idea if 

prevalence or price distribution of item classes are stable over time. Unstable prevalence 

and/or price distributions means predicting the impact of different errors or how much 

different classes should contribute to classification quality is difficult if these properties 

change. If these properties are liable to change over time, then the classifier needs to give a 
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good balance when measuring performance across classes and provide a good trade-off 

between positive and negative errors, so the method is robust to future changes in the data. 

Despite meaning the classifier and index might not be optimised to the particular 

prevalences and price distributions of the training data. This means choosing metrics that 

are insensitive to class prevalence and do not emphasise one type of error or the other. One 

option is average recall, another is F1micro – score. Both are insensitive to class prevalence as 

well so are a good option where prevalence is likely to change over time.  
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