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Executive Summary

Informative (or non-ignorable) sampling occurs when the probability of a population
element being selected in a sample correlates with the model’s outcome variable. This
results in a model that may hold for the sample but does not hold for the population,
which leads to incorrect inference. This paper discusses the approaches for dealing with
informative sampling in the coverage estimation for the 2021 Census of England and
Wales should this type of selection occur.

In the 2011 Census of England and Wales, the Census Coverage Survey was a strat-
ified two-stage cluster design, stratified by local authority and hard-to-count. Coverage
estimation was done at estimation area level (aggregate of local authorities batched to-
gether based on their similarities and data delivery), which meant the use of optimal
allocation was well-justified. In 2011, a way of dealing with informative sampling was
proposed by using the design-unbiased model-assisted ratio estimator, however it was
deemed less efficient than the model-dependent ratio estimator. The choice in favour of
the model-dependent ratio estimator was made in 2011.

For the 2021 Census of England and Wales, the estimation based on generalized lin-
ear models for binary responses are proposed. If stratification and the sample allocation
approach remain as they were in the 2011 Census Coverage Survey, there will be sub-
stantial variability of the sample selection probabilities between the strata as the models
are going to be fitted to the entire Census data.

The approaches to be considered are: (1) avoid informative sampling by allocat-
ing the sample proportionally; (2) the weighted regression approach, which takes into
account the unequal probability sampling; or (3) condition on the variables that are as-
sociated with the outcome variable and the sample selection, which will usually involve
conditioning on the design variables.



A simulation study is used to consider the outlined approaches. Four estimation
approaches (logistic regression, weighted logistic regression, mixed effects logistic regres-
sion and mixed effects logistic regression with appended vector of design variables) are
considered across two simulation scenarios and two allocation strategies (proportional
and optimal allocation).

This paper demonstrates that, if needed, informative sampling selection can be dealt
with in the 2021 Census coverage estimation, with the use of the weighted regression
approach or conditioning on design variables and their interaction. If optimal allocation
(of any type) is chosen, then some more analysis will be done to evaluate the between
strata variability.

Does the panel agree that the evidence presented in this paper shows that informative
sampling needs to be accounted for in the context of coverage estimation for the 2021
Census of England and Wales? If so, which method would be deemed the most preferred?

1 Introduction

Census coverage estimation aims to produce the census coverage error adjusted popula-
tion totals at the national and various small domain levels, say, a local authority or a
local authority by an age-sex group. These totals are often achieved by combination of
the survey sampling, capture-recapture, predictive modelling and small-area estimation
methods, see for example Brown et al. (2019) and Baffour et al. (2018). An overview of
the coverage estimation approach proposed for the 2021 Census of England and Wales
can be found in Racinskij (2018) and Racinskij & Hammond (2019).

Similarly to the coverage estimation of the 2001 and 2011 Censuses, there will be a
large post-enumeration survey, known as the Census coverage survey, at the core of the
coverage estimation of the 2021 Census of England and Wales. It can be argued, that
the coverage error adjusted totals are technically survey-based estimates with the census
data being the high quality auxiliary data. Since the census coverage survey in general
has a complex sampling design, the data analysis may require taking the design related
features into account. This report discusses one of such features usually referred to as
informative (Chambers & Skinner, [2003; Pfeffermann, 2011)) or non-ignorable sampling
(Valliant et al., 2000; Gelman, [2007)).

Simplistically, a sampling process is informative whenever the sample selection prob-
ability of a population element correlates with the model’s outcome variable. As a result,
the model may hold for the sample, but not for the population leading to incorrect in-
ference. Informative sampling and the ways to deal with it is a vast area in statistics.
However, in this report we limit the discussion to the essential minimum needed in the
context of the coverage estimation. Note also that we do not discuss many other top-
ics in the analysis of the complex survey data such as reflecting the cluster design, for
instance. To make our analysis slightly more straightforward, we also ignore the survey
non-response in our discussion.



2 Informative sampling: an outline

Arguably, very few surveys employ the simple random selection without replacement
scheme in practice. Specifically, to increase the efficiency of estimation, stratification is
often used. Stratification need not in general lead to an unequal probability sampling,
but frequently the sample selection probabilities are indeed unequal. Weighting in the
design-based methods explicitly accounts for the complex design. However, when the
model-based approaches are used, it is quite common to assume that the data were
generated directly from the population of interest (Chambers & Skinner, 2003; Gelman,
2007).

When the sample selection probabilities are unequal at some stages of sampling and
the outcome variable is correlated to the selection probabilities, the sample density and
the population density need not be equal. In such situation the sampling is called
informative (or non-ignorable) and the subsequent inference may not be applicable to
the population.

To put it slightly more formally, let y; be an outcome variable for an i*" element,
1 =1,...,N. Let x; be a vector of covariates and I; be the sample membership indicator,
fs and fy be the sample and the population densities, respectively. Then, as shown in
Pfeffermann (2011)), we have the following relationship
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It is easy to see that the two densities are equal if the following condition is satisfied:
P(l; =1 yi,@;) = P(Ii = 1| @;). (2)

In other words, conditional on the covariates the response and the selection must be
independent in order for the sampling selection be non-informative or ignorable (Zim-
mermann, [2018)). This means that all the variables that are simultaneously related to
the sampling and outcome of interest should be included (Gelman, 2007). This echoes
the notion that the bias due to informative sampling is incurred when both the sampling
fractions and the values of the response variables are different within an estimation stra-
tum in the finite population predictive approach (Valliant et al., 2000)), see Brown et al.
(2019).

Note that there are situations when even strongly informative sampling can be ig-
nored. For instance, when the logistic regression is used in the case control studies and
only the slope parameters are of interest (Agresti, [2002). Unfortunately for us, the cen-
sus coverage estimation relies on the descriptive analysis where the intercept parameter
is essential for the reliable results. Moreover, it has been demonstrated in Pfeffermann
and Sverchkov (2003) that if sampling selection also depends on x;, the slope parameters
are also affected by the informative sampling. Our research shows that it is also the case
in the coverage estimation.



3 Background on the design of the Census coverage survey

Similarly to the 2011 Coverage survey, the 2021 Census coverage survey is expected to
have the size of 335,000 households across England and Wales. The proposed design is
similar to the design of the previous Coverage survey (Brown et al., [2011): stratified
two-stage cluster. The sample is stratified by local authority by hard-to count. Within
each stratum a simple random sample without replacement of output areas is going to
be selected. The first stage sampling fractions are expected to vary between the strata.
Within each selected output area a simple random sample without replacement of the
postcodes will be selected using a certain fixed sampling fraction. At the first stage of
sampling, the z-optimal allocation (Sarndal et al.,|1992) with minimum and maximum
sample size constraints was used in 2011. Sample allocation strategy is yet to be decided
for the 2021 Coverage survey and it partly depends on the result of this work.

Note that the stratification involves the hard-to-count index which essentially reflects
the level of the census non-response in the previous census. In the coverage estimation,
we use the weights that are reciprocals of estimated census coverage probabilities (Alho,
1990; US Census Bureau, 2008; Racinskij, |2018]) . It is therefore obvious how an asso-
ciation between the outcome variable and the sample selection process may occur. If
the sample allocation process is disproportional, we are having the informative selection
unless we carefully condition on all the variables related to the census response and the
sample selection.

4 Coverage estimation in the 2011 Census of England and Wales and
informative sampling

In the coverage estimation of 2011 Census a combination of the dual system, ratio and
synthetic estimators was used, see Brown et al. (2019) for details. Here, we are mainly
interested in the way the 2011 estimation method is related to the topic of the report.

Since the data were delivered in batches in 2011, the optimal allocation described
above was well justified. The dual system estimator was applied at the cluster of postcode
by an estimation variable, by a hard-to-count stratum by a local authority to provide
protection against the heterogeneous inclusion probabilities:
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where X,ne is the census count for an estimation variable v, a local authority L, a
hard-to-count group h and a sample cluster c¢; Y, is the corresponding survey count
and M, is the corresponding census to survey match count. Local authorities were
batched together into groups known as estimation areas based on their similarities and
the data delivery timetable. The model-dependent ratio estimator was applied at the
variable by estimation area by hard-to-count level:
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where F is estimation area, spj is census coverage survey sampled areas in Lh.

For the local authorities large enough to be an estimation area on their own, there
was no risk of estimation being affected by the informative selection, since the sampling
and estimation strata were coterminous in this case. When an estimation area was made
of several local authorities, there was a potential risk of sampling being informative. In
this case, if sampling fractions and response propensities varied simultaneously between
the local authorities within the estimation area, the bias would had been incurred (Brown
et al.,[2019). The way around it would be using the model-assisted ratio estimator:

~ ZLEE Z c thvahc
qugf?) = oL > Xorh, (5)
YLeE Ycesy, WLhXvLhe [k

where wyy, is the design weight for the local authority by hard-to-count. Therefore,
would be design-unbiased, but less efficient than , whereas latter is not necessarily
design-unbiased. The choice in favour of was made in 2011.

5 Coverage estimation in the 2021 Census of England & Wales and
informative sampling

In the coverage estimation of 2021 Census of England & Wales the estimation based
on the generalized linear models for a binary response are proposed (Racinskij, 2018;
Ragcinskij & Hammond, |2019)). It is anticipated that these models will be fitted into the
linked Coverage survey to census data for the entire England & Wales.

If the stratification and sample allocation approach remains as it was in the 2011
Coverage survey, there will be substantial variability of the sample selection probabilities
between the strata. There is a risk of sampling being informative as the outcome variable
(whether a survey responding individual / household responded in census, y; = {0,1})
is associated with the stratification by hard-to-count. If not accounted for, it may incur
the bias.

We have briefly discussed why the stratification / allocation strategy was justified
in the 2011 coverage estimation. Would the same allocation strategy be well justified
with the estimation method proposed for the 2021 Census? On the one hand, the
fact that the modelling approach will borrow the strengths across the areas reduces
the need for allocating the sample by local authority and hard-to-count. In addition,
operationally the 2001 and 2011 Censuses were a lot more similar, whereas the 2021
Census operationally will differ from the two. Therefore, using the response patterns at
the local authority by hard-to-count from the previous census may give less gains than it
gave in 2011. Of course, broadly, the response will vary by the hard-to-count and census
response in 2021 will be correlated with the variable. On the other hand, allocating
sample proportionally will sort the informativeness of the sampling procedure and will
be justifiable from the pure modelling perspective. Nevertheless, there is a number of
points to consider. First of all, there is differential survey non-response by hard-to-count
which will result in disproportion in the realised sample. Hence, some disproportional



allocation may mitigate for it. Also, despite borrowing the strength, we may not be able
to achieve the comparable level of precision for some of interactions of hard-to-count
with other variables in the case of proportional allocation, for instance. So in principle,
we may be better off with some compromise allocation, but this needs more work to be
done (Burke and Racinskij, [2020).

6 Simulation study

We conducted a simulation study to explore the effect of the informative sample se-
lection on the coverage error corrected population size estimation. These simulations
are a further development of the Brown and Sexton (2009) and those used in Raéinskij
(2018) and Racinskij (2019)), but have some slight modifications needed for the problem
under consideration. In these simulations the census coverage and the census data are
generated from the models fitted to the 2011 coverage survey to census linked data. The
vector of covariates @; in the census model includes continuous age (modelled using the
natural cubic splines), activity last week, accommodation type, address one year ago,
born in the UK indicator, hard-to-count, household relation, household size, marital sta-
tus, ethnicity, region, self-contained accommodation indicator, sex, short-term migrant
indicator, tenure and various interactions of the above variables, see Racinskij (2019)).
In addition, the model contains a random intercept term. Unlike the simulations refer-
enced above, the random intercept in this study is not at the local authority level, but
at the sample stratum level, that is at, a local authority by hard-to-count level. The
Coverage survey model is similar, but categorical age-sex effect and a random intercept
at the local authority level is used. Data generated so that the perfect linkage, closed
population and independence assumptions are satisfied. There is no overcoverage in this
study.

Two census scenarios are used. The first one, referred to as the base scenario, is
directly generated from the model fitted to the real 2011 data. The second one, referred
to as the exzcess scenario, uses the original fixed effects of the above models (like the
base scenario), but modifies the random local authority by the hard-to-count residuals.
Modification proceeds is as follows: all the original residuals are sorted by local authority
and hard-to-count and then systematic random sampling selects every second residual,
keeps its original sign but raises its absolute value to the power of 0.3 (an arbitrary
figure picked to produce large enough variability between the strata); all non-sampled
residuals remain unchanged. In this way we generate two populations that are identical
in terms of the underlying fixed effects, but in the second case we have a lot more
variable response patterns between the sampling strata. In the excess scenario there
is substantial variability in hard-to-counts within a local authority as well as between
local-authorities within a hard-to-count. Note, that the response rates in the excess
decrease in the quarter of cases, remains unchanged in the half of cases and increases in
the quarter of cases compared to the base scenario. The overall response rate is around
0.94 in both scenarios (slightly lower in the excess compared to the base). It must be
noted, that variation introduced in the excess scenario is quite large and may not be



realistic, but it is helpful to highlight possible issues with informative sampling.

The sampling design in this study is as in the 2011 Coverage survey, we use two
allocation strategy: proportional and optimal. In the case of the optimal allocation it
is truly optimal as we use the exact coverage probabilities (including the contribution
of the random effects) in the allocation process. Due to technical issues, the number of
simulation scenarios had to be limited to 128.

7 Approaches

It is not always straightforward to achieve in practice. There are numerous ap-

proaches of dealing with the complex survey data which may vary depending on the

context (Chambers & Skinner, 2003). In this report we will focus on the most relevant

in the situation of the census coverage estimation. Also, given that the coverage estima-

tion process is already reasonably complicated when the informative sampling is ignored,

we tend to focus on the methods that are easier to implement using existing software.
We will consider the following ways of dealing with the above issue:

1. Avoid the informative sampling. Since the Census coverage survey is specifically
designed for the coverage estimation, we have control over its design. Certain
sampling schemes result in the non-informative sampling. The most notable, of
course, is the simple random sampling without replacements, which is not really
feasible in the case of the Coverage survey. However, broadly keeping the design
of the 2021 Coverage survey similar to the design of the 2011 Coverage survey, but
allocating the sample proportionally, will result in approximately non-informative
selection.

2. Use the weighted regression approach. The weighted regression takes into account
the unequal probability sampling when solving the estimating equations and its
outcomes are design consistent for the population (or census) parameter (Skinner,
2003]).

3. Condition on the variables that are associated with the outcome variable and the
sampling selection. This will usually involve some form of conditioning on the
variables used in the sample selection, z;, commonly referred to as the design
variables. Note, it is argued, that not only x; and z; should be included in the
model, but also their interactions (Pfeffermann, 2011). Clearly, it may not be
always feasible to do so.

Four estimation approaches are considered across the two simulation scenarios and
two allocation strategies. All of them involve some form of the logistic regression. Note,
that the logistic regression is used for convenience and speed, but there are no reasons
why a different link function cannot be used. In all four cases the reciprocal of the
estimated census response probability is used as the non-response weight.

The first approach is based on the logistic regression. It includes categorical age-
sex group, activity last week, accommodation type, address one year ago, household



relation, marital status, person ethnicity, region, self-contained accommodation, tenure
and the following second order interactions: ethnicity with tenure, ethnicity with region
and activity last week with region. We use the same vector of the fixed effects x; in
all approaches. There is also a vector z; of rudimentary design variable that contains
a hard-to-count variable with the standard 5 levels. Hence, design variable does not
reflect the crossing of the local authority and hard-to-count in this case. The total for a
variable v in a local authority L is estimated as
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where r € vL means that an element r belongs to the study variable and is located in
an area L; 7, is the estimated census response probability.
The second method is the weighted logistic regression, it uses exactly the same pre-

dictors as @ and is given by
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where p, is the estimated census response probability. We use various superscripts over
the estimated coefficients (like (w) in the above case) to highlight the fact that these
estimated coefficients will in general vary between different approaches. This approach
was run for the optimal allocation only.

The third method is the mixed effects logistic regression, with the same predictors
as in @ and @, but also having a random intercept at the local authority level

-1

TMELR A1 _ 1 8
rezv:L ’ rg):L Lt (= [XTA™ 4 2TR0M 44y |) )

The final approach is as , however, we have appended the vector of the design vari-
ables to z; which now contains the hard-to-count index as before plus the two continuous
variables used in sample allocation and an interaction of these two variables: stratum
size within a local authority by hard-to-count and the variance of the imputation rates
in the 2011 Census within a local authority by hard-to-count. Note, that it may not be
exactly the way one would be conditioning in the real application, but it was the most
straightforward way in terms of implementing it in the study. The estimator is given as
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It would be very natural to consider @ with z{ instead of z;. Unfortunately, due to
the time constraints we did not look at this option at this time. Nevertheless, it is easy



to guess its performance based on the performance of @D Note also that @D was run
for the excess scenario for the same reason.

In order to avoid biases mixing up, the Coverage survey has 100% response rate in
our simulations. This removes any heterogeneity bias. Then essentially we are left with
the bias due to model misspecification / syntheticity and the design bias.

Note also, that none of the above approaches is tuned to give the ultimate per-
formance, therefore we have more bias due to model misspecification than one would
anticipate in reality.

Note also, that none of the above approaches is tuned to give the ultimate per-
formance, therefore we have more bias due to model misspecification than one would
anticipate in reality.

8 Results

We look at the results now. We start with the high level totals since the bias due to
informative sampling will be mostly noticeable at such level. The relative bias at the
regional level is presented in Figure 1 for the base scenario, and in Figure 2 for the
excess scenario. For the base scenario, the weighted regression based estimator under
the optimal allocation and the mixed effects based approach with the proportional al-
location perform really well. The performance of the wighted regression is exactly as
expected in this situation because it ensures a good population level model. The logis-
tic regression based approach and the mixed effects regression based approach with the
optimal allocation tend to overestimate the population size slightly. This overestima-
tion is a consequence of the informative sampling under which disproportionately more
"harder’ respondents are sampled leading to the estimated probabilities of the census
non-response being lower in the sample than they are in the population. Hence, the
non-response weights are larger in the sample than they should be in the population.
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In the excess scenario the trend is similar, but the bias is of larger magnitude. This
is due to sharp increase in correlation between the sample selection probability and
response. The mixed effects logistic regression based approach with appended vector of
design variables @ performs well, but not as good as the weighted regression.

In terms of the relative root mean square error (Figure 3 and Figure 4, base / excess
scenarios, respectively) for the regional totals, the mixed effects based approaches and
the weighted regression approach perform a bit better than the rest in majority of the
cases in the base scenario. In the excess scenario, the performance of and @ is
obviously better than the performance of the remaining estimators. It is interesting to
see, that the weighted regression performs that well given that the design weights are
lot more variable in this case.
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Looking at the relative bias of the age-sex totals in the Figure 5 for the base scenario
and Figure 6 for the excess scenario, we see the similar patterns seen in the regional
estimates. In both the base and excess scenarios the weighted regression with the optimal
allocation and approaches with the proportional allocation outperform those with the
optimal allocation. Again, in the excess scenario the impact of the informative sampling
is quite prominent. We see that the conditioning on the appended design variables
approach @D works reasonably well.

In terms of the relative root mean square error (Figure 7 and Figure 8, base / excess
scenarios, respectively) for the age-sex group totals, it becomes difficult to single out
the better performing approach in the base scenario. However, in the case of the excess
scenario, and @ perform better than the rest.

Looking at the relative bias for the local authority totals, Figure 9, we see how the
logistic regression approach slightly overestimates in each local authority compared to
the weighted logistic regression based approach. Of course, we do not really expect to
see many easy noticeable differences between approaches at the local authority level.
The same data in the form of box-plots are presented in Figure 10 where the slight shift
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for the mean of the distributions can be seen with the smallest shift in the weighted
regression based approach.
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The relative root mean square errors for the local authority level estimates are pre-
sented in Figure 11. The logistic regression and the weighted logistic regression have
better performance on this metric for the local authority estimation, with the weighted
regression arguably being slightly better. We see that the mixed effects regression based
approaches quite often have a small bias but larger variances at the local authority level.
As the level of aggregation increases, the bias starts to dominate and the mixed effects
based approaches have better performance at the higher levels. Clearly, better condi-
tioning should increase the performance of the fixed effects only models in cost of some
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variance. Note also, that there is relatively little difference in the performance of the
mixed effects models in the base and the excess scenarios. Note also the effect of the
optimal allocation on the relative root mean square error for the mixed effects based
approaches.
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9 Conclusions, future work and recommendations

It has been demonstrated that, if needed, we would be able to deal with the informative
sample selection in the 2021 Census coverage estimation. Both the weighted regression
and the approach of conditioning on the design variables and their interactions showed
acceptable performance. Note that this may be only true for the sampling design dis-
cussed in the section 3. There is no guarantee that under more complex sampling design
or allocation the methods considered in this work would produce reliable results.

If an optimal allocation of any type is chosen, there will be a need for some analysis
in order to carefully evaluate the amount of the between strata variability. However, the
expectation is that the between strata variability will be close to the one observed in the
base scenario.

The remaining work is to assess the performance of the estimation approaches dis-
cussed in this paper with the compromise sample allocation (optimal at the hard-to-count
level, proportional within each hard-to-count for the local authorities).

Our recommendation for the coverage estimation is to build a fixed or mixed effects
model with all design effects first and then to perform diagnostic tests (Chambers &
Skinner, [2003) for the informativeness of the sampling. If a substantial effect is de-
tected, we recommend switching to the weighted regression model with the same sets of
covariates as in the initial model (possibly dropping some of the design effects).
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