EAP139: Methodology for assigning Red-Amber-Green status for 2021 Census returns

Date:

27 Jul 2020

Author:

Alexandra Christenson and Torunn Jegleim

1. Purpose

It's common practice in performance management contexts to assess the quality of an outcome using a "traffic-light" system; Red, Amber or Green – also known as a RAG status. This paper provides the outline of the proposed RAG status methodology for live returns during the 2021 Census collection.

2. Background

During the 2019 Rehearsal the Response Chasing Algorithm (RCA) compared live and expected return rates to identify areas with shortfalls in returns (Meirinhos, 2019b). Shortfalls were assigned a RAG status, which was visible in the 2019 RCA Dashboard (See Annex F). However, the evaluation of the 2019 Rehearsal concluded that the RAG status needed to be further developed to be more informative.

The aim of the improved RAG status methodology is to;

- 1. Give an overview of how the collection operation is doing in comparison to the census quality targets
- 2. Flag what and where the issues that need actioning are; low response and/or high variability depending on geography level

In developing the new methodology, Census Statistical Design (CSD) consulted other business areas; Question and Questionnaire Design and Methodology within the ONS and other national statistics agencies; Stats Canada, Stats NZ, US Census Bureau and Australian Bureau of Statistics.

3. Discussion

For the 2021 Census the ONS has committed to achieving key quality targets; reaching an overall response of 94%, at least 80% response in each local authority and minimised variability; proposed to be 90% of LSOAs in an LA falling within 10% of the response mean (Martyna, 2020). In order to understand if we are on track to reach these targets, a tool measuring this is needed.

The RAG status is designed to act as a decision support tool for the governance of the census collection operation. The RAG status will be widely visible in the future 2021 Census data dashboard, which is planned to be shared across teams and in daily governance meetings. It is therefore imperative that the RAG status methodology is fit for purpose; flagging issues that need actioning and transparent about how issues are flagged.

For the 2021 Census, the following is proposed;

Geography level Overview of proposed methodology	
--	--

Lower Super Output Area	RAG status determined by shortfall in live vs expected returns. Proposed thresholds in Annex A
Team Leader Area	RAG status determined by shortfall in live vs expected returns. Proposed thresholds in Annex A
Local Authority	RAG status determined by return shortfall and variability in return rates within the local authority. Relative importance of return rate and variability is adjusted throughout the operation (See Annex A). Combined to create a single RAG status (See Annex A).
Regional	Average RAG status score for the LAs making up the region. Proposed final scores in Annex A
National	 No coloured RAG or calculation – but show key figures for; The forecasted overall return rate for England & Wales The number of LAs that are forecasted to reach 80% overall response out the total number of LAs.
Online	Monitor the online proportion of response, and RAG status this against targets on a local authority and national level

Lower Super Output Area (LSOA) and Team Leader Area (TLA) RAG status

The predictive modelling and maximising response strategies are conducted and targeted at LSOA level, indicating a need to monitor returns. TLAs are the operational geographies for field staff; representing the work area of up to 12 census field officers. The RAG status at LSOA and TLA level will be a simple measure of live versus expected returns against the thresholds outlined in Annex A.

The Field Prioritisation Algorithm (Meirinhos, 2019a) will be working at an OA level to minimise variability within each LA, and so implicitly, working to improve response in the worst performing OAs will work to reduce the spread within and across LSOAs. However, there are no explicit quality targets for variability within LSOAs, and indeed, given the (average) number of LSOAs per LA, it would be neither practical nor informative to measure and so these are not included in the RAG status at LSOA level.

Local Authority (LA) RAG status

Given the census LA variability and response target, the geography provides a sensible level to introduce an enhanced calculation to determine RAG status. With 336 LAs across England and Wales, this RAG status will be crucial to flag issues for action; interventions or further ad-hoc analysis.

The RAG status at LA level will be determined by two components;

- 1. Return Rate Difference (RRD): measured as the difference between live and expected returns
- 2. Variability (V%) measured as the proportion of LSOAs in the LA with a return rate falling within 10% of the return rate mean for the LA (Martyna 2020).

Within each LA, each component is assigned a daily score from 1 (best) to 3 (worst) based on proposed thresholds (Annex A). Each component will then have a weight multiplied by its score to reflect what stage of the collection operation we are in, giving a final equation of:

(RRD score x daily weight) + (V% score x daily weight) = Final RAG score

The purpose of the weights is to accurately show what issues can be actioned. For example, until field staff go live, we have no means by which to target variability issues, thus flagging a potential problem prior to this is redundant. As the weights always add up to 1.0 (or 100%), the range of possible final scores will always be between 1 to 3 (final score thresholds in Annex A).

We propose that the component measuring variability will have a low weight (0.1) until tranche 2 field staff commence work (Census Day + 2), at which point the weights begin to gradually change until the two components are at an equal weight of 0.5 three weeks before the end of collection. The last three weeks will have a constant equal weight of 0.5 applied to both components (see table in Annex A).

Components	Day	Value	Score	Weight	Weighted score	Final score
RRD	7	0.20	1	0.9	= 0.9	1 2
V%	7	86%	3	0.1	= 0.3	1.2
RRD	50	0.20	1	0.5	= 0.5	2.0
V%	50	86%	3	0.5	= 1.5	2.0

In a hypothetical scenario, these would be the results;

Whilst the values remain the same in this scenario, the changing weights places more emphasis on the V% on day 50 compared to day 7, bringing the final score up from 1.2 to 2.0, shifting the RAG status from green to amber. This is not to say that variability issues are not important prior to census day + 2, but that they are not heavily weighted as it cannot be actioned.

In determining the weighting strategy and thresholds, special attention has been paid to ensuring that the weights and thresholds minimise RAG status volatility over time. The above methodology has been tested using 2019 Census Rehearsal data as well as using predicted data for the V% from the Field Operation Simulation (FOS) (Ward, et al., 2019).

Other approaches for Local Authority RAG status:

Alternative approaches to calculating an LA RAG status, such as using flat weights or using a risk impact table instead of final score have been explored (Annex C, Annex D, Annex E)

However, the simulations for a risk impact table flag issues as red from the first day of collection both in the FOS output data (Ward, et al., 2019) and the rehearsal data (Annex D, Annex E). Furthermore, the simulation using flat weights either flag everything as green (although we know this was not the case during rehearsal) or everything as amber/red long before we are able to take action to rectify the issues (Annex C).

This suggests that neither of the approaches are fitting given the purpose of the RAG status.

Regional and National RAG status:

On the regional level, the proposed approach is to calculate the average final RAG scores for the LAs belonging to the specific region. Following this approach, the regional RAG status considers the same components as the LA RAG status without the need to aggregate the measures or change thresholds. The final score RAG will follow the same thresholds as the LA (See Annex A).

To track the overall progress of the census collection operation, we propose to not provide a coloured RAG or calculations. Instead, viewers will have three measures indicating progress against the overall and local authority response targets and the variability target; overall final forecasted return rate, number of LAs forecasted to reach 80% response rate and number of LAs reaching the variability target (Martyna, 2020). The ad-hoc team in CSD will also be available for more thorough weekly analysis of the national picture.

Online RAG status:

We will monitor the online proportion of response, and RAG status this against targets that, at a local level consider the proportion of paper questionnaire initial contacts and an expected level of mode switching, and at a national level sum to our overall quality target for online response.

4. Conclusion

This paper has outlined the proposed method to derivate a RAG status at all geography levels during live operations as well as the proposed approach for tracking online response.

An informative RAG status is imperative to manage the census collection operation. If the programme is in danger of not reaching any of the quality targets, this needs to be flagged promptly. The purpose is to display what issues needs to be actioned where. The approach presented offers a more informative way of doing this than previously done, whilst still acknowledging that human intervention will be needed to perform more thorough analysis during live operations.

5. List of Annexes

- Annex A: Proposed thresholds for all geography levels and weights for LA
- Annex B: RAG status simulations using proposed methodology
- Annex C: RAG status simulation using proposed thresholds and constant weights
- Annex D: RAG status simulation using a risk impact table method 1
- Annex E: RAG status simulation using a risk impact table method 2
- Annex F: 2019 RCA Dashboard maps with RAG status

6. References

Martyna, Kamila (2020) EAP138: Variability Target for Response Rates in Collection <u>https://share.sp.ons.statistics.gov.uk/sites/cen/csod/CSOD_Stats_Design/Statistical_Design/Pres</u> <u>entations/Design_Authority_Board_2011_variability_v2.docx</u>

Meirinhos, Victor (2019a) EAP115: Field Prioritisation Algorithm

Meirinhos, Victor (2019b) EAP114: Independent Methodological Review: Response Chasing Algorithm <u>https://www.statisticsauthority.gov.uk/wp-content/uploads/2020/06/EAP114-</u> Independent-Methodological-Review-Response-Chasing-Algorithm.pdf

Ward, K., Barber, P., Priestly, M., Fraser, O. (2019) EAP117: Simulating Census Operations to inform Resource Decisions

Geography Level	Component	RAG Status (Score)	Thresholds
	Doturn Doto	Green (1)	RRD >= 0
LSOA	Difforence	Amber (2)	-7.5 =< RRD < 0
	Difference	Red (3)	RRD < -7.5
	Doturn Doto	Green (1)	RRD >= 0
TLA	Return Rate	Amber (2)	-5 =< RRD < 0
	Difference	nce Red (3) Green (1) Amber (2) Red (3) <i>n Rate</i> <i>Rate</i> <i>Green</i> (1) <i>Amber</i> (2) Red (3) <i>Green</i> (1) <i>Amber</i> (2) <i>Red</i> (3) <i>Green</i> (1) <i>Amber</i> (2) <i>Red</i> (3) <i>Green</i> (1) <i>Amber</i> (2) <i>Red</i> (3)	RRD < -5
	Return Rate	Green (1)	RRD >= 0
	Difference	Amber (2)	-5 =< RRD < 0
	(RRD)	Red (3)	RRD < -5
	Variability %	Green (1)	V% >= 90%
LA		Amber (2)	88% =< V% < 90%
	(V 70)	Red (3)	V % < 88%
	Final RAC	Green	1.0 & =< 1.67
	Status scoro	Amber	> 1.67 & =< 2.34
	Status score	Red	> 2.34
	Average Final	Green	1.0 & =< 1.67
Regional	Score for all	Amber	> 1.67 & =< 2.34
-	LAs	Red	> 2.34

Annex A – Proposed thresholds at all geography levels and weights for LA:

Time period	LA Weight
Up until Census Day + 2	RRD weight: 0.9 V% weight: 0.1
Census Day + 3 and until last three weeks of collection	Daily change calculated as; 0.4/days until last three weeks of collection (see *)
Last three weeks of collection	RRD weight: 0.5 V% weight: 0.5

*In simulation the daily increase/decrease is 0.017391 added/subtracted

Data us	ed	2019 Rehearsal data						FOS data (V%) 2019 Rehearsal data (RRD)				
Throch	olde	1	0					1: >= 0				
111163110	JIUS	1. >-		_				$1. \geq 0$				
RRD	RD 2: < 0 and >= -5					2: < 0 a	and >= ·	-5				
		3: < -	5					3: < -5				
Thresh	olds	1: >=	90%					1: >= 9	90%			
V%		2 < 9	0% and	>= 88%	6			$2 \cdot < 90$	% and $$	>= 88%		
• /0		2. 5		/ 00	0			2. < 30% and $>= 00%$				
		3: < 8	8%					3: < 88	8%			
Waight	•	חחח.	0.0			<u>at th</u>	roow	(a alka				
weiging	5	KKD.	0.9 uni		2, 0.5 la	SUU	nee w	/eeks				
		V%: ().1 until	CD + 2,	, 0.5 last	t thre	ee we	eks				
	Dav	Hackney	TH Final RAG	Carlisle Final BAG	Ceredigion			Hackney	тн	Carlisle	Ceredigion	
	1	AMBER	AMBER	AMBER	AMBER		Day	Final RAG	Final RAG	Final RAG	Final RAG	
	2	AMBER	GREEN	AMBER	GREEN		1	AMBER	AMBER	AMBER	AMBER	
	3	GREEN	GREEN	GREEN	GREEN		2	GREEN	GREEN	GREEN	GREEN	
	4 E	GREEN	GREEN	GREEN	GREEN		4	GREEN	GREEN	GREEN	GREEN	
	6	GREEN	GREEN	GREEN	GREEN		5	GREEN	GREEN	GREEN	GREEN	
	7	GREEN	GREEN	GREEN	GREEN		6	GREEN	GREEN	GREEN	GREEN	
	8	GREEN	GREEN	GREEN	GREEN		8	GREEN	GREEN	GREEN	GREEN	
	9	GREEN	GREEN	GREEN	GREEN		9	GREEN	GREEN	GREEN	GREEN	
	10	GREEN	GREEN	GREEN	GREEN		10	GREEN	GREEN	GREEN	GREEN	
	12	GREEN	GREEN	GREEN	GREEN		11	GREEN	GREEN	GREEN	GREEN	
	13	GREEN	GREEN	GREEN	GREEN		12	GREEN	GREEN	GREEN	GREEN	
	14	GREEN	GREEN	GREEN	GREEN		14	GREEN	GREEN	GREEN	GREEN	
	15	GREEN	GREEN	GREEN	GREEN		15	GREEN	GREEN	GREEN	GREEN	
	17	GREEN	GREEN	GREEN	GREEN		16	GREEN	GREEN	GREEN	GREEN	
	18	GREEN	GREEN	GREEN	GREEN		17	GREEN	GREEN	GREEN	GREEN	
	19	GREEN	GREEN	GREEN	GREEN		19	GREEN	GREEN	GREEN	GREEN	
	20	GREEN	GREEN	GREEN	GREEN		20	GREEN	GREEN	GREEN	GREEN	
	22	GREEN	GREEN	GREEN	GREEN		21	GREEN	GREEN	GREEN	GREEN	
	23	GREEN	GREEN	GREEN	GREEN		23	GREEN	GREEN	GREEN	GREEN	
	24	GREEN	GREEN	GREEN	GREEN		24	GREEN	GREEN	GREEN	GREEN	
	25	AMBER	GREEN	GREEN	GREEN		25	GREEN	GREEN	GREEN	GREEN	
	27	AMBER	GREEN	GREEN	GREEN		20	AMBER	GREEN	GREEN	GREEN	
	28	AMBER	GREEN	GREEN	GREEN		28	AMBER	GREEN	GREEN	GREEN	
	30	AMBER	GREEN	GREEN	GREEN		29	AMBER	GREEN	GREEN	GREEN	
	31	AMBER	GREEN	GREEN	GREEN		30	AMBER	GREEN	GREEN	GREEN	
	32	AMBER	GREEN	GREEN	GREEN		32	AMBER	GREEN	GREEN	GREEN	
	33	AMBER	GREEN	GREEN	GREEN		33	AMBER	GREEN	GREEN	GREEN	
	35	GREEN	GREEN	GREEN	GREEN		34	AMBER	GREEN	GREEN	GREEN	
	36	AMBER	AMBER	AMBER	AMBER		36	GREEN	GREEN	GREEN	GREEN	
	37	AMBER	AMBER	AMBER	AMBER		37	GREEN	GREEN	GREEN	GREEN	
	38	AMBER	AMBER	AMBER	AMBER		38	GREEN	GREEN	GREEN	GREEN	
	40	AMBER	AMBER	AMBER	AMBER		39 40	GREEN	GREEN	GREEN	GREEN	
	41	AMBER	AMBER	AMBER	AMBER		41	GREEN	GREEN	GREEN	GREEN	
	42	AMBER	AMBER	AMBER	AMBER		42	GREEN	GREEN	GREEN	GREEN	
	43	AMBER	AMBER	AMBER	AMBER		43	GREEN	GREEN	GREEN	GREEN	
	45	AMBER	AMBER	AMBER	AMBER		45	GREEN	GREEN	GREEN	GREEN	
	46	AMBER	AMBER	AMBER	AMBER		46	GREEN	GREEN	GREEN	GREEN	
	47	AMBER	AMBER	AMBER	AMBER		47	GREEN	GREEN	GREEN	GREEN	
	48	AMBER	AMBER	AMBER	AMBER		48	GREEN	GREEN	GREEN	GREEN	
	50	AMBER	AMBER	AMBER	AMBER		50	GREEN	GREEN	GREEN	GREEN	
	51	AMBER	AMBER	AMBER	AMBER		51	GREEN	GREEN	GREEN	GREEN	
	52	AMBER	AMBER	AMBER	AMBER		52	GREEN	GREEN	GREEN	GREEN	
	53	AMBER	AMBER	AMBER	AMBER		53 54	GREEN	GREEN	GREEN	GREEN	
	55	AMBER	AMBER	AMBER	AMBER		55	GREEN	GREEN	GREEN	GREEN	
	56	AMBER	AMBER	AMBER	AMBER		56	GREEN	GREEN	GREEN	GREEN	
	57 5°	AMBER	AMBER	AMBER	AMBER		57	GREEN	GREEN	GREEN	GREEN	
	59	AMBER	AMBER	AMBER	AMBER		59	GREEN	GREEN	GREEN	GREEN	
	60	AMBER	AMBER	AMBER	AMBER		60	GREEN	GREEN	GREEN	GREEN	

AMBER

AMBER AMBER

AMBER AMBER

AMBER

Annex B – Proposed LA methodology simulation on rehearsal and FOS data

Data used		2019 Rehearsal data				2019 Rehearsal data					
Thresholds	5	1: >:	= 0				1:>=0				
RRD	-	2	0 and	<u>>− -5</u>			2: -0.2n	d >5			
NND		2. \ 2. \	5	<i>></i> 3		2: < 5					
		5. < -5 5. <				3: < -5					
Thresholds	5	1: >:	= 90%)			1: >= 909	%			
V%		2: <	90% a	and >= 8	38%		2: < 90%	and >=	88%		
		3. <	88%				3. < 88%				
					1						
Weights		KKL	D: 0.7	through	out the c	ollectio	n RRD	: 0.5 thro	bughout	the colle	ction
		peri	od				perio	d			
		V%:	0.3 th	rougho	ut the col	llection	V%:	0.5 throu	ughout th	ne collec	tion
		perio	od	-			perio	d	-		
Dav	Hackn Final B	ey		Carlisle	Ceredigion		Hackney	тн	Carlisle	Ceredigion	
1	AMBE	R .	AMBER	AMBER	AMBER	Day 1	Final RAG	Final RAG	Final RAG	Final RAG	
2	AMBE	R	GREEN	AMBER	GREEN	2	RED	AMBER	RED	AMBER	
3	GREE	N	GREEN	GREEN	GREEN	3	AMBER	AMBER	AMBER	AMBER	
5	GREE	N	GREEN	GREEN	GREEN	4	AMBER	AMBER	AMBER	AMBER	
6	GREE	N	GREEN	GREEN	GREEN	6	AMBER	AMBER	AMBER	AMBER	
7	GREE	N	GREEN	GREEN	GREEN	7	AMBER	AMBER	AMBER	AMBER	
8	GREE	N	GREEN	GREEN	GREEN	8	AMBER	AMBER	AMBER	AMBER	
10	GREE	N	GREEN	GREEN	GREEN	9	AMBER	AMBER	AMBER	AMBER	
11	GREE	N	GREEN	GREEN	GREEN	10	AMBER	AMBER	AMBER	AMBER	
12	GREE	N	GREEN	GREEN	GREEN	12	AMBER	AMBER	AMBER	AMBER	
13	GREE	N	GREEN	GREEN	GREEN	13	AMBER	AMBER	AMBER	AMBER	
14	GREE	N	GREEN	GREEN	GREEN	14	AMBER			AMBER	
16	GREE	N	GREEN	GREEN	GREEN	16	AMBER	AMBER	AMBER	AMBER	
17	GREE	N	GREEN	GREEN	GREEN	17	AMBER	AMBER	AMBER	AMBER	
18	GREE	N N	GREEN	GREEN	GREEN	18	AMBER	AMBER	AMBER	AMBER	
20	GREE	N	GREEN	GREEN	GREEN	20	AMBER	AMBER	AMBER	AMBER	
21	GREE	N	GREEN	GREEN	GREEN	21	AMBER	AMBER	AMBER	AMBER	
22	GREE	N	GREEN	GREEN	GREEN	22	AMBER	AMBER	AMBER	AMBER	
23	GREE	N N	GREEN	GREEN	GREEN	23	AMBER	AMBER	AMBER	AMBER	
25	GREE	N	GREEN	GREEN	GREEN	25	AMBER	AMBER	AMBER	AMBER	
26	AMBE	R	GREEN	GREEN	GREEN	26	RED	AMBER	AMBER	AMBER	
27		R	GREEN	GREEN	GREEN	27	RED	AMBER	AMBER	AMBER	
29	AMBE	R	GREEN	GREEN	GREEN	28	RED	AMBER	AMBER	AMBER	
30	AMBE	R	GREEN	GREEN	GREEN	30	RED	AMBER	AMBER	AMBER	
31	AMBE	R	GREEN	GREEN	GREEN	31	RED	AMBER	AMBER	AMBER	
32		R	GREEN	GREEN	GREEN	32	RED			AMBER	
34	AMBE	R	GREEN	GREEN	GREEN	34	RED	AMBER	AMBER	AMBER	
35	GREE	N	GREEN	GREEN	GREEN	35	AMBER	AMBER	AMBER	AMBER	
36	GREE	N N	GREEN	GREEN	GREEN	36	AMBER	AMBER	AMBER	AMBER	
38	GREE	N	GREEN	GREEN	GREEN	38	AMBER	AMBER	AMBER	AMBER	
39	GREE	N	GREEN	GREEN	GREEN	39	AMBER	AMBER	AMBER	AMBER	
40	GREE	N	GREEN	GREEN	GREEN	40	AMBER	AMBER	AMBER	AMBER	
41	GREE	N	GREEN	GREEN	GREEN	41	AMBER	AMBER	AMBER	AMBER	
43	GREE	N	GREEN	GREEN	GREEN	43	AMBER	AMBER	AMBER	AMBER	
44	GREE	N	GREEN	GREEN	GREEN	44	AMBER	AMBER	AMBER	AMBER	
45	GREE	N	GREEN	GREEN	GREEN	45	AMBER	AMBER	AMBER	AMBER	
40	GREE	N	GREEN	GREEN	GREEN	40	AMBER	AMBER	AMBER	AMBER	
48	GREE	N	GREEN	GREEN	GREEN	48	AMBER	AMBER	AMBER	AMBER	
49	GREE	N	GREEN	GREEN	GREEN	49	AMBER	AMBER	AMBER	AMBER	
50	GREE	N	GREEN	GREEN	GREEN	50	AMBER	AMBER	AMBER	AMBER	
52	GREE	N	GREEN	GREEN	GREEN	52	AMBER	AMBER	AMBER	AMBER	
53	GREE	N	GREEN	GREEN	GREEN	53	AMBER	AMBER	AMBER	AMBER	
54	GREE	N	GREEN	GREEN	GREEN	54	AMBER	AMBER	AMBER	AMBER	
56	GREE	N	GREEN	GREEN	GREEN	56	AMBER	AMBER	AMBER	AMBER	
57	GREE	N	GREEN	GREEN	GREEN	57	AMBER	AMBER	AMBER	AMBER	
58	GREE	N	GREEN	GREEN	GREEN	58	AMBER	AMBER	AMBER	AMBER	
59 60	GREE	N	GREEN	GREEN	GREEN	60	AMBER	AMBER	AMBER	AMBER	

Annex C – Simulation using constant weights on rehearsal data

Annex D – RAG status simulation of approach using risk impact table 1

Annex E – RAG status simulation using risk impact table 2

Using a risk/impact table where different combinations of the two scores give different RAG statuses

	Hackney	TH	Carlisle	Ceredigion
Day	Final RAG	Final RAG	Final RAG	Final RAG
1	AMBER	AMBER	AMBER	AMBER
2	AMBER	AMBER	AMBER	AMBER
3	AMBER	AMBER	AMBER	AMBER
4	AMBER	AMBER	AMBER	AMBER
5	AMBER	AMBER	AMBER	AMBER
6	AMBER	AMBER	AMBER	AMBER
7	AMBER	AMBER	AMBER	AMBER
8	AMBER	AMBER	AMBER	AMBER
9	AMBER	AMBER	AMBER	AMBER
10	AMBER	AMBER	AMBER	AMBER
11	AMBER	AMBER	AMBER	AMBER
12	AMBER	AMBER	AMBER	AMBER
13	AMBER	AMBER	AMBER	AMBER
14	AMBER	AMBER	AMBER	AMBER
15	AMBER	AMBER	AMBER	AMBER
16	AMBER	AMBER	AMBER	AMBER
17	AMBER	AMBER	AMBER	AMBER
18	AMBER	AMBER	AMBER	AMBER
19	AMBER	AMBER	AMBER	AMBER
20	AMBER	AMBER	AMBER	AMBER
21	AMBER	AMBER	AMBER	AMBER
22	AMBER	AMBER	AMBER	AMBER
23	AMBER	AMBER	AMBER	AMBER
24	AMBER	AMBER	AMBER	AMBER
25	AMBER	AMBER	AMBER	AMBER
26	AMBER	AMBER	AMBER	AMBER
27	AMBER	AMBER	AMBER	AMBER
28	AMBER	AMBER	AMBER	AMBER
29	AMBER	AMBER	AMBER	AMBER
30	AMBER	AMBER	AMBER	AMBER
31	AMBER	AMBER	AMBER	AMBER
32	AMBER	AMBER	AMBER	AMBER
33	AMBER	AMBER	AMBER	AMBER
34	AMBER	AMBER	AMBER	AMBER
35	AMBER	AMBER	AMBER	AMBER
36	AMBER	AMBER	AMBER	AMBER
37	AMBER	AMBER	AMBER	AMBER
38	AMBER	AMBER	AMBER	AMBER
39	AMBER	AMBER	AMBER	AMBER
40	AMBER	AMBER	AMBER	AMBER
41	AMBER	AMBER	AMBER	AMBER
42	AMBER	AMBER	AMBER	AMBER
43	AMBER	AMBER	AMBER	AMBER
44	AMBER	AMBER	AMBER	AMBER
45	AMBER	AMBER	AMBER	AMBER
46	AMBER	AMBER	AMBER	AMBER
47	AMBER	AMBER	AMBER	AMBER
48	AMBER	AMBER	AMBER	AMBER
49	AMBER	AMBER	AMBER	AMBER
50	AMBER	AMBER	AMBER	AMBER
51	AMBER	AMBER	AMBER	AMBER
52	AMBER	AMBER	AMBER	AMBER
53	AMBER	AMBER	AMBER	AMBER
54	AMBER	AMBER	AMBER	AMBER
55	AMBER	AMBER	AMBER	AMBER
56	AMBER	AMBER	AMBER	AMBER
57	AMBER	AMBER	AMBER	AMBER
58	AMBER	AMBER	AMBER	AMBER
59	AMBER	AMBER	AMBER	AMBER
60	AMBER	AMBER	AMBER	AMBER

	Hackney	TH	Carlisle	Ceredigior
Day	Final RAG	Final RAG	Final RAG	Final RAG
1	AMBER	AMBER	AMBER	AMBER
2	AMBER	AMBER	AMBER	AMBER
3	AMBER	AMBER	AMBER	AMBER
4	AMBER	AMBER	AMBER	AMBER
5	AMBER	AMBER	AMBER	AMBER
6	AMBER	AMBER	AMBER	AMBER
7	AMBER	AMBER	AMBER	AMBER
8	AMBER	AMBER	AMBER	AMBER
9	AMBER	AMBER	AMBER	AMBER
10	AMBER	AMBER	AMBER	AMBER
11	AMBER	AMBER	AMBER	AMBER
12	AMBER	AMBER	AMBER	AMBER
13	AMBER	AMBER	AMBER	AMBER
14	AMBER	AMBER	AMBER	AMBER
15	AMBER	AMBER	AMBER	AMBER
16	AMBER	AMBER	AMBER	AMBER
17	AMPER		AMPER	
10	AMBER	GREEN	AMBER	ANDER
10	AMBER	GREEN	GREEN	ANDER
19	CDEEN	GREEN	GREEN	ANADED
20	GREEN	GREEN	GREEN	ANADED
	GREEN	GREEN	GREEN	AIVIBER
22	GREEN	GREEN	GREEN	AMBER
23	GREEN	GREEN	GREEN	GREEN
24	GREEN	GREEN	GREEN	GREEN
25	GREEN	GREEN	GREEN	AMBER
26	GREEN	GREEN	GREEN	GREEN
27	GREEN	GREEN	GREEN	GREEN
28	GREEN	GREEN	GREEN	GREEN
29	GREEN	GREEN	GREEN	GREEN
30	GREEN	GREEN	GREEN	GREEN
31	GREEN	GREEN	GREEN	GREEN
32	GREEN	GREEN	GREEN	GREEN
33	GREEN	GREEN	GREEN	GREEN
34	GREEN	GREEN	GREEN	GREEN
35	GREEN	GREEN	GREEN	GREEN
36	GREEN	GREEN	GREEN	GREEN
37	GREEN	GREEN	GREEN	GREEN
38	GREEN	GREEN	GREEN	GREEN
39	GREEN	GREEN	GREEN	GREEN
40	GREEN	GREEN	GREEN	GREEN
41	GREEN	GREEN	GREEN	GREEN
42	GREEN	GREEN	GREEN	GREEN
43	GREEN	GREEN	GREEN	GREEN
44	GREEN	GREEN	GREEN	GREEN
45	GREEN	GREEN	GREEN	GREEN
46	GREEN	GREEN	GREEN	GREEN
47	GREEN	GREEN	GREEN	GREEN
48	GREEN	GREEN	GREEN	GREEN
49	GREEN	GREEN	GREEN	GREEN
50	GREEN	GREEN	GREEN	GREEN
51	GREEN	GREEN	GREEN	GREEN
52	GREEN	GREEN	GREEN	GREEN
53	GREEN	GREEN	GREEN	GREEN
54	GREEN	GREEN	GREEN	GREEN
55	GREEN	GREEN	GREEN	GREEN
56	GREEN	GREEN	GREEN	GREEN
57	GREEN	GREEN	GREEN	GREEN
58	GREEN	GREEN	GREEN	GREEN
59	GREEN	GREEN	GREEN	GREEN
	GREEN	GREEN	GREEN	GREEN

