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Summary Census 2021 may well be the last of its kind in the UK. For provision of

population statistics in the immediate years following 2021, the basic scheme currently

envisaged is to supplement available administrate data with a continuous coverage survey,

which amounts to a yearly sample size of about 0.5 million addresses, although the details

of the methodology are yet to be determined. Meanwhile, the ONS is seeking alternative

approaches, which can make greater use of the relevant administrative data. This report

outlines the basic ideas of a rolling approach for provision of UK neighbourhood population

statistics beyond 2021, set in the broad perspective of establishing a sustainable future

for official statistical systems, which is faster in response, richer in detail and greater in

return of long-term cost efficiency (Zhang, 2013). It consists of 4 sections:

1. Selective review of post-census method

2. Fractional counting and rolling

3. Transition to register-based auditing-assisted approach

4. Key topics for methodology development

1 Selective review of post-census method

Internationally and historically speaking, one can distinguish three main approaches when

it comes to the provision of post-census population statistics: Demographic Balancing

Equation, Central Population Register and Adjusted Population Dataset. Some selected

examples of each approach are briefly reviewed below.

1.1 Demographic Balancing Equation

The Demographic Balancing Equation (DBE) allows one to update census population

statistics, based on vital statistics, available data on internal and external migration, and

various group-quarter (GQ) or other special populations (e.g. military personals).

• In reality the approach is based on administrative data of birth, death, internal mi-

gration and GQ or special populations. Nevertheless, for various reasons, longitudinal

linkage of relevant data and the base (census) population at the individual level is

1



not the case in practice. The basis of production is a yearly constructed population

hypercube rather than, say, a one-number census-like population dataset.

• Survey data are often required for the external migration component. Indirect residual

estimation methods are sometimes used for certain migration groups and special pop-

ulations. In the UK context, it may be possible to make greater use of the continuous

coverage survey under the DBE approach, as will be commented later.

1.1.1 Example of USA

In the USA, the Population Estimates Program (PEP) uses the DBE approach, supple-

mented by the American Community Survey (ACS) for foreign-born immigration.

The PEP produces population estimates at three levels: national, state and county, by

characteristics of sex, age, race and Hispanic origin; see e.g. CBS (2019). At the first stage,

the national characteristics, state total, and county total estimates are created. At the

second stage, estimates of states and counties by characteristics are obtained, by raking

of the lower-level DBE-estimates to the controlled estimates at a higher level. Linear

interpolation between two successive yearly estimates generates the seemingly continuous

Population Clock, which can be viewed at http://www.census.gov/popclock/.

The DBE-estimates are essentially based on administrative data, except for foreign-

born immigration, which uses the ACS. In particular, for state and county total estimates,

one calculates county-to-county net domestic migration based on four sources: Internal

Revenue Service tax return data for ages 0-64, Medicare enrollment data from Centers of

Medicare and Medicaid Services for ages 65+, Social Security Administration’s Numerical

Identification File for all ages, and change in the GQ population.

The ACS uses an address frame, and aims primarily at producing attribute statistics

similar to the census long-form format. Two ACS weights are computed for households

and persons, respectively. The household unit weight is produced first, based on sampling

design inclusion probabilities reweighted for nonresponse and then raked to county/group

of county level totals; person weight is then produced by raking. See e.g. CBS (2014).

1.1.2 Comments on UK

The DBE approach is used to produce the mid year population estimates (MYE) in the

UK; see e.g. ONS (2018). The key dissemination levels are national and local authority.

Internal migration data are derived from administrative sources. For international migra-

tion one makes use of the International Passenger Survey, while administrative sources

are used to distribute immigrants to each local authority.

One anticipates the relevant administrative sources to be enhanced in the coming years.

The most relevant sources include the Benefits and Income data, the Patient Register,

Education data at all levels, the Council Tax data, and so on. In particular, updates of

home addresses in the Drivers’ License database may potentially prove to be an important

addition, regarding internal migration. Moreover, Migrant Work Scan data can provide
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information on all overseas nationals who have registered for and allocated a National

Insurance Number. Together with Exit Checks they could be expected to greatly improve

the external migration data in future.

Going forward, two important questions need to be considered for potential improve-

ments of the estimation of DBE components in the UK context.

• Can the ability to link individual-level administrative data across sources improve the

quality of address or locality information, and extend the range of sources to be used?

For instance, in the USA, one splits the non-GQ population into 0-64 and 65+ by age,

each with its designated source, which may be simplistic and practical, only if individual

linkage is infeasible but not otherwise.

• Can greater use be made of the coverage survey in the DBE approach in the UK,

compared to the ACS in the USA? The question is natural, especially provided linkage to

the administrative data. But even without linkage, it may be possible to combine area-

level administrative and survey migration data, e.g. by means of generalised structure

preserving estimation for small area compositions.

1.2 Central Population Register

In a number of countries that produce register-based census-like population statistics,

Central Population Register (CPR) is used for continuous updating of neighbourhood

population statistics at very low aggregation levels. A wide range of statistics can be pro-

duced with much greater ease and lower cost, including timely population dynamics, de-

tailed migration flows and household statistics that can inform policy makers, researchers,

businesses and general public. See e.g. some statistics produced by Statistics Norway at

https://www.ssb.no/befolkning/faktaside/befolkningen#blokk-1.

There are two key political and cultural premises of the CPR approach: infrastructure

and population concept. The CPR approach is only feasible, given the necessary legal

framework, uptake of universal person identification in public services, and adequate time

labelling of relevant demographic events and recording in the CPR. It requires also the

population to be counted at their de jure instead of de facto address. The latter poses

a key challenge to the relevance of the statistics, in which respect statistical adjustment

may still be necessary for certain topics. See e.g. Zhang (2011) and Zhang and Fosen

(2018) for a discussion of register-based household statistics.

1.3 Adjusted Population Dataset

In some countries, the CPR does not have the desired accuracy to warrant the CPR ap-

proach directly, often due to a lack of updated migration data. Moreover, in countries

where CPR does not exist at all, it may still be possible to construct a statistical Popula-

tion Dataset (PD), based on linkage and integration of relevant administrative registers,
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which can yield national population counts that are similar to the census population esti-

mates, as it is e.g. the case in the UK (ONS, 2015), New Zealand and Australia. In either

case, statistical adjustment is then necessary. Despite nearly all the examples below are

based on adjustment of the CPR, we shall refer to this approach as Adjusted Population

Dataset (APD), in anticipation of future developments that can enable the approach in

those countries that do not have CPR at all.

The main issues for adjustment are erroneous enumeration, missing enumeration and

misplacement in the PD. Erroneous and missing enumerations causes over- and under-

counting at the national level, respectively; whereas misplacement causes inter-locality

over- and under-counting simultaneously but does not cause over- or under-counting at

the national level. Below we give some examples of the different cases.

1.3.1 APD for misplacement in Israel

The CPR in Israel has only negligible over- and under-counting errors at the national level.

The Israeli Integrated Census 2008 was conducted chiefly to adjust for misplacement in

the CPR. See e.g. Nirel and Glickman (2009). All the persons registered in a Statistical

Area (SA) according to the CPR were given a weight, such that their weighted total

equals to the estimated population size in that SA. There are over 3000 SAs in Israel.

For post-census population statistics, a person’s weight would remain the same, as

long as the person stays in the same SA. A person would in principle take on the weight

of the destination SA, if the person registers a move to another SA in the CPR. In this

way, the pattern of misplacement adjustment in each SA is preserved, while the CPR

count of persons registered in the SA naturally varies over time.

Notice that in reality the basic idea expounded above needs to be refined in several

ways. For instance, the weight may vary across different sub-populations within an SA.

Moreover, ad hoc adjustment may be required, if one detects an abnormal change in a

given SA, often due to delays of previous or new housing developments.

1.3.2 APD for erroneous enumeration in Latvia and Estonia

Erroneous enumerations due to lack of updating of emigration were evidenced in the

last census in both Latvia and Estonia. Each developed new method for post-census

population statistics, which are similar in some respects while differ in others.

The initial census 2011 enumeration returned a population count of 2.075 million in

Latvia, which was about 7% lower than the CPR count. The Central Statistical Bureau of

Latvia worked out an adjustment method based on statistical classification and migration

mirror statistics (CSBL, 2019). By combining the census data with relevant administra-

tive data including the CPR, approximately 100 000 persons were added to the census

enumeration from the administrative data. Treating the imputed census enumeration as

the labelled units, supervised learning by logistic regression yielded a predicted probabil-

ity of erroneous enumeration for each eligible person in the CPR. The fitted model was
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used in the post-census years to adjust the CPR population count.

The imputation of census under-enumeration was similar in Estonia, which added

about 30 000 persons from the relevant administrative sources to the initial census enu-

meration of about 1.3 million in total. A residency index was developed for the post-census

years, which is updated on a yearly basis (Tiit and Maasing, 2016). First, an extended

population (U+) is constructed, which has negligible under-coverage errors. Next, 27 ad-

ministrative sources are used to construct a Sign-of-Life score X(k, t−1) for person k ∈ U+

in year t, including special care, parental leave, dental care, digital prescription, prison

visit, change of vehicle, residence permit, and so on. The residency index for person k in

year t, denoted by R(k, t) is calculated from R(k, t− 1) and X(k, t− 1) as

R(k, t) = d ·R(k, t− 1) + g ·X(k, t− 1)

where d is the stability rate and g the signs of life rate, the values of which are heuristically

chosen to yield plausible updated population counts.

1.3.3 APD for erroneous and missing enumerations in Italy

The population census in Italy is moving to a ‘permanent’ census, which will produce

annual population statistics instead of the previous decennial cycle, using information

from administrative sources integrated with sample surveys. Moreover, the first-phase

sample for population statistics will provide the frame for the main social survey samples,

which are negatively coordinated at the second phase.

The first-phase sample has two components. The component A consist of a sample of

Enumeration Areas or addresses selected from an Integrated Address File. The component

L is selected from a list of households (in the CPR), to provide reliable information on

the ‘census’ variables that are not available from the administrative sources. The two

components A and L will amount to a yearly sample size of about 400,000 households

and 1,000,000 persons, respectively, drawn from 2850 out of 7950 municipalities.

Population estimates will be obtained by an extended Dual System Estimation method,

accounting for both under-coverage and over-coverage errors of the CPR. It is planned

that all the eligible persons in the CPR will be given a weight, such that the weighted

totals are equal to the estimated population sizes in the respective municipalities.

1.3.4 APD for missing enumerations in Ireland

The traditional population census in Ireland takes place every 5 years. Despite the absence

of CPR, the CEO has developed an alternative estimation methodology at the national

level, based purely on administrative sources; see e.g. Dunne (2015), Zhang and Dunne

(2017). The Irish APD approach is unique internationally, where it operates in such a

way that one only needs to deal with the missing enumerations at the national level.

The core of Dual System Estimation consists of two lists both subjected to missing

enumerations only. The CEO constructs a Sign-of-Life register, called the Person Activity
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Register (PAR), based on observed activities across a range of administrative sources, such

that the PAR is expected to have only negligible over-counting errors, whereas it can

have systematic under-coverage errors in different parts of the usual resident population.

Next, the Drivers’ License Database (DLD) provides a plausible second cross-sectional

enumeration list, based on the fact that each holder needs to renew the license every

10 years. As discussed in Zhang (2019b), the two lists PAR and DLD can satisfy the

assumptions of Dual System Estimation, which differ from those assumptions traditionally

held for estimation based on census and census coverage surveys (Wolter, 1986).

2 Fractional counting and rolling

The CPR approach is unlikely to be feasible in the UK in the near future beyond 2021.

Provided linkage across the sources, the APD approach will encompass the DBE ap-

proach, now that all the administrative data for component estimation can be brought

together into an integrated PD. The key challenge then, for making greater use of the com-

bined administrative and survey data, will be to achieve an individual-based estimation

methodology (such as in Israel, Latvia and Estonia), instead of population hypercube-

based estimation (such as currently envisaged in Italy and Ireland). This requires above

all two extensions to the existing APD approach:

• whereas the current Israeli approach focuses only on misplacement and the Latvian

and Estonian approaches only on erroneous enumeration, one needs to be able to

account for more than one type of error in the APD approach for the UK;

• one needs a more rigorous methodology for the updating of weights, score or index

over time, for the individuals in the PD.

Below, to address the first issue, we outline a theory of fractional counting for popula-

tion statistics; regarding the second issue, we discuss the basic ideas for the rolling or

incremental learning of the fractional counters.

2.1 Fractional counting for misplacement

To focus on the idea, suppose for the moment that the PD, denoted by P , is only subjected

to misplacement, where P = U and U is the target population.

Sign-of-Life (SoL) addresses For each person k in P , one finds the possible distinct

addresses, at which the person may be located according to all available administrative

sources. For instance, a student may have home address (of the parents) in addition to an

address in the Higher Education loan register. Or a person may have different addresses

in the Patient Register and the Council Tax register. Notice that depending on the data

available and the aggregation detail required for population statistics, the address may
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identify a coarser-than-dwelling location, such as post code or municipality. We shall refer

to such addresses as the SoL-addresses.

SoL-address classifier and predictor Let ak be the q-vector containing all the avail-

able SoL-addresses of person k in P . Let zk contain all the relevant auxiliary data, such

as known family relationships, emigration status, previous addresses, work or study place,

and so on. A SoL-address classifier is given by

yk = g(ak, zk) ∈ {0, 1}q where y>k 1 = 1

i.e. one and only one of the available addresses is chosen as the address for person k, such

that the corresponding component of yk is set to 1 and all the other components are set

to 0. Moreover, a SoL-address predictor, or fractional counter, is given by

µk = h(ak, zk) ∈ [0, 1]q where µ>k 1 = 1

i.e. each component can take value from 0 to 1 and all the components sum to 1. The

idea is for each component of µk to be probability that the corresponding address is the

true usual resident address of person k, denoted by adrk.

Population size based on fractional counting Based on the individual classifier for

all k ∈ P , the population count of locality i, for i = 1, ...,m, is given by

N̂C
i =

∑
k∈P

y>k δk and δk = δ(ak ∈ Ai) (1)

where Ai denotes the set of admissible addresses for the ith locality, and δ(ak ∈ Ai) is

the q-vector with each component taking value 1 if the corresponding address belongs

to Ai and 0 otherwise. Whereas, based on the fractional counter µk and the method of

fractional counting, the population count of the same locality is given by

N̂P
i =

∑
k∈P

µ>k δk and δk = δ(ak ∈ Ai) (2)

Properties of fractional counting Prediction by classifier (1) resembles election by

majority vote, where the winner takes all the votes regardless of the margin over the votes

for the loser. It will cause bias of population statistics. Prediction by fractional counting

(2) aims to avoid this problem. It is unbiased for any Ni, provided1>Pr(adrk = ak) = 1

µk = µ(ak, zk)
(3)
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The first condition ensures that the true address (adrk) can only be one of the SoL-

addresses, insofar misplacement is the only problem at hand. The second condition then

ensures that the probabilities of adrk = ak is entirely determined by ak and zk. In reality

the matter will depend on the covariates zk and how well µk in (2) is modelled. Given

the µk’s, the prediction variance of N̂P
i by (2) is

V (N̂P
i −Ni) =

∑
k∈P

µ>k δk
(
1− µ>k δk

)
where we assume that δ(adrk ∈ Ai) is independent across different persons, conditional

on the (ak, zk)’s. However, it is possible to allow for clustering effects in the variance

calculation, depending on the model underlying µk, such as when it always assigns the

same µk to all the persons in the same family and family relationship is part of zk.

Producing social statistics Population and sub-population totals based on fractional

counting can provide calibration totals for social surveys in the same way as the MYEs.

Consider register-based attribute statistics. Denote by εk the value of interest for k ∈ P ,

and ε̂k the corresponding register-based value. In cases where εk is observed without

error, one can simply set V (ε̂k − εk) = 0; otherwise the variance will be positive in cases

of model-based prediction of εk based on register sources. The population and fractional

counting totals in the ith locality are given, respectively, as

ti =
∑
k∈P

δkεk and t̂i =
∑
k∈P

µ̂k ε̂k

where δk = δ(adrk ∈ Ai) as defined in (1) and (2), and µ̂k = µ>k δk = P̂r(k ∈ Ui) by the

fractional counter. We have unbiased t̂i, for i = 1, , ...,m, provided

E(µ̂k − δk) = 0 and E(ε̂k − εk) = 0 and (ε̂k, εk) ⊥ (µ̂k, δk) ,

since E(t̂i − ti) =
∑

k∈P E(µ̂k ε̂k − δkεk), where

E(µ̂k ε̂k − δkεk) = E(µ̂k ε̂k − δk ε̂k + δk ε̂k − δkεk) = 0 .

Provided independence across different persons, the prediction variance is given as

V (t̂i − ti) =
∑
k∈P

V (t̂i − ti)

Again, it is possible to relax the independence assumption and allow for clustering effects

in the variance calculation.
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2.2 Initiation in the absence of missing enumerations

It is natural to initiate the fractional counters in connection with the next census. The pre-

2011 MYEs were retrospectively adjusted upwards given the census population estimates.

This suggests that the administrative sources for the DBE component estimation may

suffer from some under-coverage. Nevertheless, we shall assume that going forward the

enhanced administrative sources will enable one to construct the PD as an extended

population, denoted by P , which has negligible under-coverage of the population, denoted

by U . However, for any in-scope person, we do not require the first condition of (3) to

hold, in anticipation of possible weakness of the SoL-address sources. That is, for each

person k ∈ P ∩ U , we allow for a probability of being displaced, denoted by

ξk = 1− 1>Pr(adrk = ak) ≥ 0 .

For supervised learning of fractional counter, one ideally needs to label everyone in P
first as erroneous or not, then in the latter case, displaced or not, and finally in the case

of not displaced, the vector adrk = ak. The situation following the UK census 2021 is

ragged due to the presence of multiple errors, as depicted in Table 1.

Table 1: Initiation of fractional counters in P based on census
Fractional counter Enum.

Placement Displaced Erroneous P Census
1 adr ξ1 θ1 1 1

2 adr
...

...
... Core

...

3 adr
...

...
...

...

· · · · · · ... ξNc θNc Nc Nc

1 adr
...

...
...

...

2 adr
...

...
... (Non- NL

3 adr
...

...
... core) N̂

· · · · · · ... ξNp θNp Np∑
µ>k 1 +

∑
ξk = N̂ , N̂ +

∑
θk = Np︸ ︷︷ ︸

Benchmarking

Reading from right to left, the census enumerations are numbered as 1, ..., NL, where

Nc of them can be linked to P . The linked part of P is referred to as the core of PD,

denoted by Pc. One observes δ(k ∈ U) = 1 and δ(adrk = ak) for all k ∈ Pc, based on the

census data. One can treat Pc as a non-probability sample from P . Under the assumption

of non-informative selection, i.e.

µ(ak, zk|k ∈ Pc) = µ(ak, zk|k ∈ P ∩ U) ,
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one can estimate µ(ak, zk|k ∈ P∩U) consistently from Pc. This allows one to populate the

probabilities ξk and µk for all k ∈ P , in the case of k ∈ U . Moreover, these probabilities

can be benchmarked to the census population estimates, denoted by N̂ , at any aggregation

level or for any sub-population of choice. There are different ways of benchmarking; see

e.g. Favre et al (2005) for a method that can incorporate unit-level constraints.

The estimation of the probability of erroneous enumeration, denoted by θk for k ∈ P ,

requires a different approach. Some possibilities are given below.

• One can replicate the approach of Latvia and Estonia, whereby one labels a subset of

N̂ persons in P , denoted by PU ⊂ P . The additional non-core persons in PU \ Pc are

the ones judged to be the most likely in-scope persons in P \ Pc or, equivalently, the

persons in P \ PU are the most likely out-of-scope persons in P \ Pc.

• One can use the population hypercube estimated from the census and census coverage

survey, and assign the probabilities θk according to the cell of person k, for k ∈ P .

• One can draw a probability sample s from P \ Pc and obtain δ(k ∈ U) for k ∈ s, and

use the combined sample Pc ∪ s to estimate θk, for k ∈ P .

Benchmarking of the estimated θk’s may be necessary, denoted by N̂ +
∑
θk = Np, in

the case of individual-based estimation. Finally, notice that international migration and

other special populations may need to be treated separately from the above.

2.3 Basic ideas of rolling

By rolling we mean that in principle the fractional counters can be updated in a nearly

continuous manner over time, just as P itself. It seems most similar to incremental

learning in the statistical machine learning literature. Below we first summarise the data

that can be made available for rolling, and then discuss the basic ideas in the parametric

and algorithmic settings, respectively.

2.3.1 Data for rolling

Let Pt be the PD at time t, where t ≥ 0, and P0 is the initiation PD, say, at the census

time point. Denote by Lt the set of labelled persons, where Lt ⊆ Pt, on which supervised

learning can be based. Without losing generality, one can partition Lt into three parts:

Lt = St ∪ Bt ∪ At (4)

where St denotes the subset of persons that are associated with known inclusion probabil-

ities, and Bt denotes the other persons for whom we observe updated labels of (erroneous,

displaced, placement), and At the rest for whom we have only the labels from t − 1.

It will be important and helpful to enhance the collection, organisation and usage of all

the relevant data, across the ONS, in order to facilitate efficient rolling and enable the

transition to a sustainable system for population statistics in the long term.
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Coverage survey The planned post-census coverage survey is a source of St. The

observations in St can obviously be used for updating of µ and ξ, pertaining to the

probabilities of displaced and placement. Depending on the actual design and estimation

method, it may as well be possible to update the erroneous enumeration probability θ,

especially if it is possible to administer follow-up surveys at the sampled addresses in the

coverage survey.

On-going surveys As mentioned before, the planned approach at Istat is to draw

household samples for the main social surveys from their first-phase sample for population

statistics. Unless the ONS adopts the same approach, there will be other labelled persons

from the on-going social surveys, in addition to the coverage survey. Notice that the

fieldwork protocol in the on-going surveys will need to be enhanced to ensure the quality

of the data collected for rolling. Whether these additional labelled persons can be classified

as part of St or Bt depends on the actual sampling design.

Administrative sources Updating in the relevant administrative sources can generate

labelled persons. For instance, updating of the Council Tax register, the home addresses

in Drivers’ License database, the PAYE register, and so on, can all provide data for Bt.
The distinction of core and non-core in Bt can be relevant at least in the near future.

2.3.2 Rolling in the parametric setting

For a parametric setting of the fraction counters, suppose the relevant probabilities are

given by the inverse of the logistic link function, denoted by

π(xk,β) = E(yk|xk;β)

for person k, where yk is the vector of indicators whose components sum to 1, and xk

is the vector of known covariates, and β the logistic regression coefficients. Suppose the

initial β0 are estimated based on a large dataset in connection with the census, denoted

by β̂0, with associated variance Σ̂0.

At the next time point t = 1, one could refit the model using the labelled persons in

L1, of which D1 = S1 ∪ B1 are associated with updated observations of y1,k, for k ∈ D1.

This assumes yk remains the same at t = 0, 1, for any non-updated person k ∈ L1 \ D1,

which may be problematic if the lack of updating is due to delays or errors in the sources.

One could refit the model using only the data associated with D1, under some suitable

assumption of non-informative selection of D1 from P1. The estimation precision is then

determined by the size of D1, which is much smaller than the initiation dataset L0, so

that the uncertainty of the estimated β1 will be much larger than that of β̂0.
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Consider empirical Bayes (best) prediction (EBP) under the hierarchical model:

E(y1,k|x1,k,β1) = π(x1,k,β1)

β1 ∼ N(β̂0, Σ̂0)

where the normal distribution is motivated by the large size of initiation dataset L0. At

the lower level, the population dynamics which change the parameter β0 from time 0 to β1

at time 1 is modelled as a ‘random’ departure from the previous ‘position’ β̂0 with variance

Σ̂0. This differs in concept to fully Bayesian approach, where the hyper-parameter of the

prior distribution of β1 needs not to have any empirical connotation.

Assuming IID observations over D1, we obtain the prediction function for β1 as

f(β1|y1,D1
,x1,D1 ; β̂0, Σ̂0) =

∏
k∈D1

f(y1,k|x1,k,β1) · φ(β1; β̂0, Σ̂0)∏
k∈D1

f(y1,k|x1,k)

Let β̂1 and Σ̂1 be the prediction mean and variance of β1, respectively. In this way the

lower-level model is updated to β2 ∼ N(β̂1, Σ̂1), by which the model is rolled forward

and ready to be used for updating at t = 2.

The EBP approach can thus facilitate the rolling of fractional counters, without the

extra and potentially problematic assumption that yk remains the same for k ∈ L1 \ D1,

or losing efficiency as when estimating β1 only based on D1. It achieves stability over

time, balancing between the signals from Dt and the inertia of N(β̂t−1, Σ̂t−1): any value

of βt far from β̂t−1 are ‘weighted down’ by φ, compared to only based on f(yt,k|xt,k,βt).

2.3.3 Rolling in the algorithmic setting

Machine learning or statistical machine learning has a vast and rapidly growing literature.

There does not exist a unified framework of the different approaches. Below we first list

some classifications and concepts that seem relevant, before we illustrate and discuss the

basic ideas of decision tree updating in the present context.

With respect to the logical basis of learning, a distinction is between transduction and

induction. Transduction or transductive inference is reasoning from observed (training)

cases to specific (test) cases. In contrast, induction is reasoning from observed training

cases to general rules, which are then applied to the test cases. The distinction seems most

interesting in siutations where the predictions of the transductive model are not achievable

by any inductive model. However, transductive algorithms that seek to predict discrete

labels tend to be derived by adding partial supervision to a clustering algorithm, while

supervised learning is generally considered to be a form of induction.

With respect to the context of learning, one commonly distinguishes among unsu-

pervised learning (without labelled units), supervised learning (based on labelled units),

and reinforcement learning (in an interactive environment). The last type of algorithm

enables an agent to learn by trial and error using feedbacks from its own actions and
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experiences, such as in gaming. Semi-supervised learning is a class of techniques that

typically use a small amount of labelled data with a large amount of unlabelled data, as

many researchers have found that unlabelled data, when used in conjunction with a small

amount of labelled data, can produce considerable improvement in learning accuracy.

With respect the process of learning, broadly speaking there are two ways to train a

model. A static model is trained offline, once and then used as-is for a while. A dynamic

model is trained online, where data is continually entering the system and incorporated

into the model through frequent updates.

• In active learning, one seeks to select the most informative unlabelled instances and

ask an omniscient oracle for their labels, in order to retrain a learning algorithm to

maximise accuracy. Clearly, the selection mechanism can be designed to resemble audit

sampling for model validation or improvement.

• In incremental learning, the data is generated by an external process, and continually

used to further train the model, i.e. without the model being completely retrained

using all the available data at any given time point. The motivation may be technical,

e.g. the data becomes available only gradually over time or its size is out of system

memory limits. A central concern is to allow the model to adapt to new data without

forgetting its existing knowledge. Some incremental learners have built-in parameters

or assumptions that control the relevancy of new and old data. See e.g. Ade and

Deshmukh (2013), Gepperth and Hammer (2016).

Regarding the validity of the trained model, data or concept shift is a term one finds in

the machine learning literature, which is said to occur when the joint distribution of inputs

and outputs differs between training and test stages. Covariate shift, a particular case of

data shift, occurs when only the input distribution changes. An example is email spam

filtering, which may fail to include spams (for training) that are not detected by the filter

used to classify spams. Relevant statistical concepts developed for various informative

selection mechanisms do not seem to have attracted much attention here.

2.3.4 Rolling of a decision tree

The Very Fast Decision Tree (VFDT) system is one of the most successful algorithms

for mining data streams (Domingos and Hulten, 2000). Its main innovation is the use of

Hoeffding bound to decide how many examples (observations) are necessary to observe

before installing a split-test at a leaf of the tree. Splitting the leaf makes only a local

change to the tree, since the prediction of units ending at another leaf is not affected. The

theoretical result refers to the maximum expected disagreement between the Hoeffding

tree and the asymptotic batch tree given infinite observations. However, the asymptotic

batch tree is hardly our present interest, where one may assume that the population

structure (hence the tree itself) must change over time, and the target is not the tree that

one will grow given infinite observations that span infinitely over time.
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x ≤ c : x > c

↙ ↘
{1, 0, 0, 0} {0, 1, 1, 1}

To illustrate the issue, consider the above split for two leaves in the tree grown at

t− 1. Let there be one observation (x′, y′) at t passing this way. Now,

• if x′ ≤ c and y′ = 1, or x′ > c and y′ = 0, then (x′, y′) may be considered to provide

‘negative’ evidence to the current tree, but perhaps not necessarily so if the value 1 in

the left leaf or 0 in the right leaf happens to be observed a long time ago;

• if x′ ≤ c and y′ = 0, or x′ > c and y′ = 1, then (x′, y′) may be considered to provide

‘positive’ evidence to the current tree, but perhaps not necessarily so if a value 0 in

the left leaf or 1 in the right leaf happens to be observed a long time ago.

In other words, for the rolling of a decision tree that evolves over time (subjected to

concept shift), more considerations are required than the number of observations and the

discriminant measure of the split.

It seems that one may still need to use part of the updated observations in Dt for

training and part of them for validation. Let Mt denote the updated tree, and Mt−1 the

tree grown at t− 1. At least two measures may be needed:

∆ε: how much better Mt predicts for the updated units in Dt than Mt−1,

∆M : how much change Mt predicts for the non-updated units in Pt \ Dt.

Since Mt−1 yields 0 in terms of both measures, one may need to balance between the two

measures when growing Mt. For instance, one may choose to maximise ∆ε subjected to

an upper bound on ∆M , or minimise ∆M subjected to a lower bound on ∆ε.

3 Register-based auditing-assisted approach

Greater resource savings will be the case in future, if population statistics are produced

from administrative data and on-going surveys under the APD approach, while purposely

designed coverage survey is only used from time to time for auditing. There are two

necessary elements to such a register-based auditing-assisted APD approach.

Rolling without coverage surveys At some stage one needs to be able to exclude

the envisaged regular coverage survey data from Lt in (4), and only use the updated

observations from other on-going surveys and administrative sources for the rolling of

fractional counters, whether it is in the parametric or algorithmic setting.
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This is not as unthinkable as it may seem at first. For instance, it may be noticed

that the existing DBE approach is essentially a register-based APD approach, based on

an estimated population hypercube. The Irish APD approach suggests it may be possible

to estimate the population hypercube purely based on administrative data, albeit using

a different methodology than DBE component estimation. In the register-based APD

approaches of Israel, Latvia and Estonia, individual counters are produced by different

methods, none of which uses any regular coverage surveys. The Norwegian household

register provides another example, where decision rules are applied to individual-level data

from the administrative sources. So the question that matters is how good a register-based

individual-level APD approach can become in the UK.

Auditing inference Zhang (2018) contrasts register-based APD approach to the APD

approach based on combining registers and coverage survey. Under the purely register-

based approach, “an estimator, denoted by N̂n, can be calculated under a statistical

model, using multiple incomplete administrative registers, where N denotes the unknown

population size and n the generic size of the available datasets.” It is suggested that,

regardless how effective the rolling of N̂n may be, one is unlikely “to have N̂n/N
P→ 1

under some asymptotic setting, as n,N →∞”. Audit sampling will be necessary, in order

to “validate the model underlying N̂n, ..., which is affected by the sampling error of the

auditing survey”. This raises the challenge of audit sampling inference.

Using disaggregation of Consumer Price Index based on proxy household expenditure

measures obtained from transaction data, Zhang (2019a) develops an audit sampling

inference approach for big-data statistics. Generically speaking, let θ0 be the true scalar

parameter value of interest. Let θ∗ be a point estimate based on big data, such that its

variance is negligible compared to its potential bias for all practical purposes. One can

test H0 : θ∗ = θ0 based on audit sampling. However, an accuracy measure is needed, even

if the hull hypothesis cannot be rejected at the chosen level. A general dilemma in this

context is the following. Let θ̂ be an unbiased estimator of θ0 based on audit sampling, and

let V̂ (θ̂) be an unbiased estimator of its audit sampling variance. An unbiased estimator

of the mean squared error (MSE) of θ∗ can be given as

M̂SE = (θ∗ − θ̂)2 − V̂ (θ̂) .

However, when the bias θ∗−θ is small, auditing may fail to yield a meaningful measure, if

the audit sampling variance is not small enough, in which case one easily obtains M̂SE < 0

as the result. To overcome the dilemma, Zhang (2019a) proposes a novel accuracy measure

to replace the standard MSE. If feasible in the present context, then one can employ an

audit sample that is much smaller than the envisaged coverage survey sample.

Summary In the long-term perspective, greatest gains can be achieved via a gradual

transition from an APD approach that requires coverage survey sampling to a register-

based auditing-assisted APD approach. Audit sampling aims to validate the register-based
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statistics, and to generate meaningful accuracy measure, for which one can use a much

smaller sample size than the envisaged coverage survey sample. To enable the transition,

it will be important that one as soon as possible starts the development, so that one

can test and refine the required methods and to obtain the necessary experience and

confidence over time.

4 Key topics for methodology development

Four inter-related topics for methodological development emerge from the above:

• data linkage for longitudinal PD;

• rolling or incremental learning, including benchmarking, design of coverage survey,
and parallel development of register-based auditing-assisted APD approach;

• appropriate uncertainty propagation or accuracy measure in various scenarios;

• methodology for producing social statistics in the new environment.

4.1 Longitudinal PD

Generic scalable linkage methodology is a premise to the provision of UK neighbourhood

population statistics. In the first instance, the relevant longitudinal administrative data

should be linked to form the longitudinal PD; in the next instance, longitudinal data

linkage is the ability to link the longitudinal PD to other open or free data, as well as

relevant sample surveys (often longitudinal themselves).

Davis-Kean et al. (2017) projects an ambitious outlook to the longitudinal population

for ESRC UK longitudinal study resources. In particular, this aims at standardising the

designs of the various longitudinal surveys so that they all use the same longitudinal

population register (i.e. a population spine) as their sampling frame, and with all ESRC

research-related linkage of different administrative and survey data sources harmonised to

this spine. As an example of such a constructed longitudinal population spine, in countries

that do not have a population register to start with, one may refer to the Integrated Data

Infrastructure (IDI) at Statistics New Zealand (SNZ, 2018).

Although the Fellegi and Sunter (FS) methodology for record linkage has proven to

be very useful in practice (e.g. Owen et al., 2015), it does have some theoretical issues.

• Applying the Likelihood Ratio Test to all the pairs A × B in files A and B creates a

multiple comparison problem. The acceptable pairs require deduplication, e.g. when

both (ab) and (ab′) are above the acceptance threshold. It is difficult to link multiple

files in a transitive manner, e.g. that (ab) in A× B and (bc) in B × C are links does

not necessarily entail (ac) will be accepted as a link when looking at A× C.

• The joint distribution of all the nAnB comparison scores is ill-defined, if one treats

e.g. the comparison scores for (ab) and (ab′) as if they were independent of each
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other. The so-called maximum likelihood estimator of the parameters of the m- and

u-probabilities (Jaro, 1989) are biased in reality; see e.g. Fortini and Tuoto (2019).

Entity resolution provides theoretically a more attractive formulation (e.g. Christen,

2012), where the set of (unique) entities underlying the separate datasets are envisaged as

a latent spine of unknown size, and each record (in any dataset) is attached to one and only

one latent entity on the spine. In this way, the records in different files are linked to each

other or deduplicated, provided they are attached to the same latent entity, in a transitive

manner regardless of the number of datasets involved. There are a few applications of the

entity resolution perspective under the Bayesian paradigm of computation (e.g. Tancredi

and Liseo, 2011; Stoerts et al., 2017), although there is nothing intrinsically Bayesian

about this perspective to record linkage. Lack of scalability has been a central challenge

to the proposed methodology so far, which is not yet feasible e.g. to link the population

census file with the patient register.

Scalable linkage methods for multiple population-size datasets are important to the

creation of the longitudinal PD. Moreover, the generic ability to link multiple files in

a transitive manner can be expected to improve the quality of statistical information

harnessed in the linked dataset. Replacing the FS-paradigm to record linkage by the

entity resolution perspective can provide the angle for innovative approaches.

4.2 Rolling or incremental learning

The methodology of rolling or incremental learning needs to be studied and decided upon.

Firstly, one needs to find out how rolling by EBP in the parametric setting (Section 2.3.2)

works out in practice. Next, it is possible that algorithmic learning (Section 2.3.3) can

provide a more flexible and powerful predictive modelling approach. However, incremental

learning in the presence of concept shift (i.e. the model changes over time) does not yet

have an established approach in the literature. Methodological developments in this

respect will be necessary, in case one would like to pursue algorithmic learning.

Whether one adopts parametric or algorithmic learning, there are at least three other

relevant aspects that seem worth attention, as discussed below.

Firstly, one may naturally wish to benchmark the updated fractional counters, towards

the estimated population hypercube from combined register and coverage survey data,

as during their initiation (Table 1). A possibility is to only apply benchmarking when

producing population statistics to be disseminated, say, on a yearly basis in the years

immediate after 2021. In other words, benchmarking and rolling of fractional counters

can have different frequencies. The methodology and practice need to be established.

Secondly, how to make effective use of the coverage survey, and can active learning be

related to its design? By active learning, one seeks to observe the unlabelled instances

that are most effective for model validation or improvement. For instance, in the present

context, it seems reasonable that one should give higher sample representation of the

non-core part of the PD, or the persons who are judged to have weak fractional counters,
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e.g. placement probabilities µk are not ‘close’ to a dummy vector, or a relatively large

probability of being displaced (ξk) or out-of-scope (θk). Regardless of the exact character-

isation, this suggests that one may need a method for follow-up surveys of some addresses,

given the PD-status of the persons at different addresses.

Thirdly, ‘parallel’ learning of register-based fractional counters (Section 3) requires a

different approach, where the coverage survey data are only used indirectly for updating

of the model, but not directly as labelled observations for supervised learning. This

means that one would like to combine supervised learning from Lt \ Ct, where Ct denotes

the coverage survey sample, and heuristic updating of the fitted model, based on the

evidence in Ct. Such heuristic updating differs from benchmarking, where the latter

requires estimates using the coverage survey. For instance, one may envisage heuristic

updating in the form of a decision tree, where the paths close to the root are determined

by stable decision rules evidenced from the comprehensive coverage survey data, while

the observations in Lt \ Ct are only used for the splits and sprouting near the leaves.

4.3 Uncertainty propagation or accuracy measure

Theoretical conceptualisation and practical method for uncertainty propagation or accuracy

measures are needed in several scenarios.

Firstly, for the initiation of fractional counters, the core part of PD that can be

linked to the census enumerations will be used for the estimation of displacement and

misplacement probabilities, whereas the census enumerations and the census coverage

survey will be used for estimating the probability of erroneous enumeration. It needs to

be verified whether conditional uncertainty propagation given the estimated fractional

counters can sensibly capture the various underlying variations, and if not, how it might

be modified to produce plausible accuracy measures in a practical manner.

As explained in Section 2.3.2, uncertainty propagation from parameter updating to

fractional counting given the parameter can be based on a coherent scheme under the

rolling of parametric EBP. The matter is less clear under incremental algorithmic learn-

ing. Suppose the fitted model is given as a decision tree, which is updated by a constrained

optimisation method (Section 2.3.4). Conditional uncertainty propagation given the up-

dated tree is straightforward, just as when the fractional counters are given parametrically.

But how can one incorporate the uncertainty of the tree updating itself? One can intro-

duce some kind of bootstrap. But at which level should one allow the replicate trees to

vary from each other: simply where the new splits are created, or higher up?

Finally, the methodology of audit sampling inference needs to be worked out for

register-based fractional counting (Section 3). It will be possible to treat the coverage

survey sample, or part of it, as the audit sample, whether the coverage survey is designed

to accommodate active learning or not. This is necessary in order to provide the statisti-

cal argument for the transition towards a register-based auditing-assisted APD approach

in the long term, in replacement of the more costly continuous coverage survey.
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4.4 Producing social statistics in the new environment

Though not central to this report, it must be pointed out that the production of social

statistics requires a broad perspective to design and estimation in the new environment.

The specifics of future provision of population statistics will change considerably in the

UK. Traditional MYEs with decennial census updating will no longer be the foundation

of social statistics on temporally varying topics and phenomena of interest. It would

be narrow-minded and ineffective to simply replace the population benchmarks, albeit

produced based on a different APD approach beyond 2021, but keep the same design

strategies across the spectrum of social survey programmes.

For instance, as mentioned earlier, a two-phase approach is currently being developed

in Italy, where the first-phase sample targets mainly at the population statistics, and the

major social survey samples are selected as negatively coordinated second-phase samples.

It is yet unclear whether this is a suitable solution in the UK. Neither is it necessarily

the most effective approach, generally speaking or in the long run, when it comes to the

combined use of coverage survey and other social social surveys.

The coverage survey as currently envisaged may no longer be necessary, provided the

transition to a register-based auditing-assisted APD approach to population statistics.

How to combine audit sampling and on-going social surveys will be then a different overall

design question. Indeed, greater use of administrative data is expected to extend to the

area of social statistics as well. It is thus perhaps appropriate to set on a future landscape

of register-based auditing-assisted population and social statistics.
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