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Key Messages of Paper 

 

Purpose  

• This paper introduces and sets the scene for the fractional counting approach for 
producing administrative based, multivariate population outputs.  It explains how the 
approach works alongside (and extends on) other administrative based projects under 
the Population and Migration Statistics Transformation Programme. It demonstrates 
a simplified hypercube with some component models to show the potential for the 
use of fractional counting to produce administrative based population and 
characteristics estimates, at a more granular level. The aim is to provide proof of 
concept and to inform the direction of future work. 
 

Key Asks of MARP 

The panel are asked to comment on the paper and consider the following questions: 

• Should we pursue this approach for estimating small area multivariate characteristics? 
• Do you have any comments on the work undertaken? 
• Do you have suggestions for the component methods/ models?  
• Are you aware of any similar work? 
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Executive Summary 

This project assesses the feasibility and benefits of a fractional counting approach for 
population statistics that are derived from integrated data sources (including administrative 
and survey data).  The term “fractional counting” is used to refer to the process of calculating 
statistical outputs from a  weighted data set, where the weights account for under or over 
coverage in the underlying administrative records and reflect other uncertainties such as the 
correct postcode address for that individual, as well as the reliability and timeliness of the 
data sources.  

The main principle in constructing the weighted dataset is that the adjusted census database 
represents the true 2011 population and can be used as a comparator for the initial 
development of weights for the administrative-based dataset. For example, the probability 
that the postcode address recorded in an administrative source is the correct address for a 
person could be estimated based on the assumption that the census record represents the 
true address. The weighted administrative dataset could subsequently be rolled forward over 
time using updated administrative data, but clearly as time elapses from the census the 
relationships based on the Census responses will become less relevant and a mechanism will 
be required for updating the models on which these are based too.  

It is thought that fractional counting may have potential to provide more robust estimates 
than can be achieved when using integer counts, which typically involves making assumptions 
in order to decide how to classify conflicting information across sources.  The focus is to 
provide a framework for estimating detailed multivariate tabulations rather than estimating 
the overall population totals, for example gender/age/labour market status. 

We are currently at an early stage of the work; this paper primarily sets the scene for 
fractional counting, presenting how the development of the fractional dataset works 
alongside (and extends on) other administrative based research outputs such as the 
Administrative Based Population Estimates (ABPEs). It demonstrates a simplified prototype 
and some component models to show the potential for the use of fractional counting to 
produce administrative based population and characteristics estimates, at a more granular 
level. 

Progress to date looks promising, with each of the considered models being effective both in 
terms of pure classification metrics as well as in reproducing high-level aggregated weights, 
but has been limited as we have not been able to obtain all the key administrative sources for 
2011, particularly 2011 Patient Demographic Service (PDS) and Customer Information System 
(CIS) data. Both these sources have proved to be useful in estimating the correct address of 
people registered on administrative sources in previous work. We have improvised with data 
currently available within the ONS secure systems in order to understand and train the 
component models but will need to align the reference dates of source data in order to fully 
evaluate the methods and properties of our weighted dataset. 

Future work will consider parametric versus algorithmic methods for rolling forward the 
fractional datasets and how to assess the quality and wider properties of the outputs. 
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Fractional counting for administrative based population statistics 

Daniel Ward, Jonathan Rees, Iva Spakulova, Greg Payne, Alison Whitworth 

 

1. Introduction  

This project investigates a fractional counting approach for population statistics that are derived from 
integrated data sources (including administrative and survey data). The approach is to build a 
weighted, record level dataset which can be used to estimate multivariate population outputs at any 
geographical level. The dataset can include characteristic information such as age, sex and labour 
market activity, where data are available in the administrative records for the attributes, and in this 
case would form a multidimensional cross tabulation or “hypercube”.  We refer to the dataset as the 
hypercube throughout this paper; by hypercube we mean a table that contains weighted counts of 
people for each combination of characteristics, for example gender/age/location. The fractional 
counting approach is used to account for uncertainty in the administrative records, so for example the 
probability that the address recorded on the administrative record is the correct address and the 
reliability of that source. A source might be considered more reliable if there is evidence of recent 
activity for that individual. The fractional counting has potential to provide more robust estimates 
than can be achieved when using integer counts, which typically involve deciding which address 
recorded on the administrative source is the correct address and allocating the individual, by 
estimating residency weights across available addresses. The focus of the methodology is estimating 
those detailed cross tabulations via the hypercube, rather than estimating the overall population 
totals. One key assumption is that robust population totals exist. 

The approach was suggested by Professor Li-Chun Zhang (2019) “On provision of UK neighbourhood 
population statistics beyond 2021” (paper provided). This ONS project will produce a prototype of the 
weighted dataset suggested in his paper and investigate how updated administrative records can be 
used with regular survey data to continuously roll this forward over time. Without a future decennial 
census, a mechanism for periodic auditing or quality assurance of the rolled forward hypercube will 
also be essential. The project will investigate the extent to which a large-scale survey (such as the 
Integrated Population and Characteristics Survey (IPACS)) can achieve this and make 
recommendations for any specific requirements going forward. The project in its entirety provides a 
potential system for creating continuous estimates for the component population subgroups in the 
hypercube. However, it does not provide a solution for creating data where it does not exist in the 
administrative or survey sources, or for creating coherence between migration outputs derived 
independently and population totals based on the fractional hypercube. How to integrate these 
aspects will be considered at a later stage and are the subject of other projects under the ONS 
Population and Migration Statistics Transformation (PMST) programme.   

We are currently at an early stage of the work; this paper primarily sets the scene for fractional 
counting, presenting how the development of the hypercube works alongside (and extends on) other 
administrative data based projects such as the Administrative Based Population Estimates (ABPEs). It 
demonstrates a simplified hypercube with some component models to show the potential for the use 
of fractional counting to produce administrative based population and characteristics estimates, at a 
more granular level.  

 

https://uksa.statisticsauthority.gov.uk/wp-content/uploads/2020/07/EAP119-Integrated-Population-and-Characteristics-Survey-IPACS.docx
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/articles/developingourapproachforproducingadminbasedpopulationestimatesenglandandwales2011and2016/2019-06-21
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2. Context and Background 

ONS currently uses the cohort component method to provide local authority (LA) population estimates 
by age (single year of age) and sex, on an annual basis between census years. This method updates 
census estimates at an aggregate level by accounting for the components of population change (births, 
deaths and migration). People are counted at their census address and then administrative data is 
used to account for internal migration and lower level distributions of international migration, whilst 
survey data is used for higher level estimates of international migration (regional).  The changes are 
applied to the census-based estimates at LA level and then these population totals are broken down 
to small area level using administrative data as indicators of recent small area population 
distributions/or change. A top down approach is used whereby the more detailed (lower level 
geography) estimates are constrained to higher level (more accurate) population totals creating 
coherent population size estimates at all levels.  

Detailed population estimates by population characteristics such as ethnicity, or employment status 
are published as part of the decennial census outputs. Between census years some key characteristics 
are estimated at country or regional level using dedicated surveys and, where possible, small area 
estimation techniques are used to draw strength from administrative data for more detailed 
estimates.  For example, LA level estimates of unemployment are estimated using the Labour Force 
Survey (LFS) and Benefit Claimant Counts in a model-based approach.  

ONS’s goal is to better meet our users’ needs using firstly government-held administrative data, and 
other data. The census gives us a snapshot of society, but it only happens once every ten years; and 
over time the value of the data to decision makers decreases.  The Office for National Statistics is 
taking forward work to transform the population and social statistics system. The National Statistician 
will make recommendations to the government in 2023 on the future of population statistics, 
including what measures will be necessary to support the new approach; this may include another 
census.  

One of the benefits in making greater use of administrative data is the potential for more 
frequent small area statistics such as those produced currently only once every ten years. Users 
ideally require multivariate outputs i.e. population totals by age, sex, employment 
status, ethnicity etc, for small geographical areas. ABPEs have been produced and published as 
research outputs under this programme. 

Version 1 and 2 of the Statistical Population Dataset (SPD) derived for the ABPEs were produced by 
linking administrative records. Version 1 (V1) counted people on a fractional basis where records were 
linked and the different sources for each individual allocated equal weighting. A person with records 
on both the Patient Register (PR) and Customer Information Service (CIS), for example, would be 
represented with a weight of 0.5 for each source and counted on a fractional basis if the addresses 
recorded on each straddled target geographies. Treating the sources with equal weighting was found 
to result in biased distributions however, so version 2 (V2) of the SPD adopted an approach that 
combined two methods for allocating persons to addresses; firstly to use the NHS Personal 
Demographic Service (PDS) movers extract to determine logically which address is correct. Where use 
of the PDS data did not resolve the conflict a modelling approach was used to determine the most 
likely address (the models are summarised in Appendix 3). The individual was then assigned, as a 
whole, to the address scoring the highest probability. 

 

https://www.ons.gov.uk/census/censustransformationprogramme/administrativedatacensusproject/administrativedatacensusresearchoutputs/sizeofthepopulation/22october2015release
https://www.ons.gov.uk/census/censustransformationprogramme/administrativedatacensusproject/methodology/methodologyofstatisticalpopulationdatasetv20
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Version 3 (V3) of the SPD counts people on an integer basis using an activity-based approach to reduce 
over-coverage in the admin-based population dataset. The objective is to build rules specific to age 
groups that make best use of the data sources that provide the best coverage for that group. For 
example, the CIS is used to identify individuals ages 16-64 through evidence of economic activity, with 
the Higher Education Statistics Agency (HESA) dataset, which captures data on students in higher 
education, being used to confirm or add additional records. Similarly, the English and Welsh School 
Census’ (ESC, WSC) are used alongside PDS data to identify school aged individuals. Those with activity 
on at least one administrative data source are included in the SPD and, to prevent those with activity 
on multiple sources receiving duplicate counts, the data sources are linked and only one record 
selected.  

One of the key objectives of this version of the SPD is to drive out over-coverage from the 
administrative based estimates so all records included should have a sign of activity within the 12 
months prior to the reference date of the ABPE or appear in the same address and have a relationship 
with an active person. This has resulted in intended higher levels of estimated under-
coverage than seen in previous versions of the ABPEs, but by reducing the overcount it is thought 
to provide a more appropriate platform for combining with a Population Coverage Survey to produce 
coverage-adjusted population size estimates using Dual System Estimation in a similar way to the 
methods used to obtain Local Authority (LA) coverage adjusted estimates for the 2011 census. 
 
In summary, methods for estimating population totals have primarily focused on counting individuals 
on an integer basis and sought evidence to classify characteristic values where there is uncertainty. 
The exception is an early iteration of the SPD where a fractional counting approach was tested making 
the simple assumption that records for an individual are equally valid. This project will assess the 
feasibility and benefits of counting entirely on a fractional basis using estimated probabilities that 
reflect uncertainty in the underlying sources. It will draw upon the findings of research undertaken for 
the ABPEs, particularly the modelling undertaken for V2 of the SPD to predict the probability of correct 
address. It will also draw upon the methods that make use of “signs of life” to eliminate over-
coverage and also those for determining usual residence status. 
 
A “simulation and estimation” framework has been developed as part of the PMST Programme in 
order to test, develop and compare the performance of different estimation methods. This involves 
simulating data which represent the characteristics of a “true” base population and then also 
simulating administrative and survey data for this population. The overall design of the simulated 
administrative and survey data relies on observed coverage patterns for administrative data, and 
assumes levels of non-response that are typical for a coverage survey. In essence, the framework 
creates a “level playing field” on which to compare proposed estimation methods and to allow broad 
“stress testing”, to establish under what conditions estimators do well. The framework development 
has focused on population size estimation, but it could be potentially extended to include the 
estimation of multivariate characteristics.  

To date the Fractional Counting project prototype has been developed with the original data sources 
outside of the simulation framework. As iterations of the framework develop and capture more of the 
underlying characteristics of the sources, we will investigate creating a simulated fractional database 
within the framework in order to test and compare its component methods. However, at present, the 
aim of the framework is to develop a methodology for estimating total population size, and any 
stratification of estimates remains at a high level only. In a top down approach, as currently used for 
population statistics, these higher level administrative based estimates could provide benchmarks or 
calibration totals for the more detailed multivariate outputs obtained from the fractional population 
dataset. Further detail of the simulation work is available in Archer, R. et al. 2020. 

https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/articles/developingourapproachforproducingadminbasedpopulationestimatesenglandandwales2011and2016/2019-06-21
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3. Strategy for developing an initial hypercube prototype  

The main principles of the fractional counting framework are that the adjusted census database 
represents the true 2011 population and can be used as a comparator for the initial 2011 admin-based 
dataset. In its simplest form the ratios of the estimates from the census and combined administrative 
data for each multivariate population subgroup, form the initial weights for the hypercube. In order 
to obtain more accurate population outputs, the weights need to be refined to account for different 
sources of uncertainty such as the residential address where this differs across sources. For 2011, 
probabilities for the address could be estimated using the “correct” census records and relevant 
covariate data for linked records. The adjusted administrative dataset can be rolled forward over time, 
using updated administrative data, but clearly as time elapses from the census the relationships on 
which the weights depend will become less relevant and a mechanism will be required for updating 
the models too. Without another census, surveys (where the data collection is controlled and has 
known inclusion probabilities) will be required to refit the models. The estimation precision is 
determined by the size of the updated datasets but is likely larger than the initial census-based 
estimates so the new weights would need to take this into account too. 

 The advantage of the fractional counting approach is that it has potential to reduce bias in population 
estimates, providing the error in the administrative data sources can be correctly defined and 
modelled. Zhang (2019), for example, demonstrates the properties of fractional counting for local area 
population totals when accounting for error in the administrative residential address records. The 
weighted hypercube also has the potential for producing estimates by any multivariate tabulation 
where person level data for the component univariate characteristics are available and can be linked 
to the initial unadjusted population dataset. It is not a trivial task to estimate and account for all the 
underlying uncertainties and processes within the hypercube however, the properties of the 
prototype developed in this project will be fully evaluated and a method for capturing the remaining 
uncertainty (and underlying variations) in estimates will be investigated with a view to producing 
accuracy measures. This will include an auditing process integrated within a rolling system for 
continuous outputs.  

The hypercube is also dependent on the ability to successfully link data sources, initially linking 
longitudinal administrative data, and then surveys and other sources as part of the rolling process.  
For our prototype we use the Demographic Index (DI), constructed within ONS to enable linkage 
between sources using only an ONS ID.  The index allows data to be made accessible without retaining 
the personal identifiers and provides an anonymised database of longitudinally linked administrative 
data. Sources in the Demographic Index include administrative registers of different government 
departments and authorities to ensure broad coverage of the population. It uniquely identifies every 
person who has registered or interacted with the selected administrative systems. Matching error will 
propagate throughout the hypercube, the impact of this will be considered in the quality evaluation 
described above. 

 

4. Implementation  

The steps for implementing the fractional counter and rolling forward the hypercube are outlined 
below. A summary explanation of these (as described in Zhang 2019) is provided in Appendix 1.  

Steps for developing the hypercube: 
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I. Develop the initial extended population database from administrative sources using 2011 
data. 

II. Estimate the probability that the addresses recorded on the administrative data are the 
correct residential address for that individual using census responses as the truth. 

III. Develop an indicator that each individual within the database belongs to the target 
population, in our case this is usually resident population (i.e. has been or intends to be 
resident in the UK for a period of one year). 

IV. Calculate the initial hypercube by summing the probabilities (of whether each address 
recorded by the administrative process is the correct address) and multiplying by (0,1) 
indicators that the person is part of the target, usually resident population and the address is 
within the target area of interest.   

V. Extend the hypercube to include other key census “type” characteristics of the population. 
VI. Develop methods for rolling forward the hypercube:  Updating the initial administrative 

dataset and model parameters in a nearly continuous process over time 
VII. Develop procedures for periodic auditing of the estimated population totals, perhaps using a 

purposely designed coverage survey in an audit-assisted approach. 

To date we have worked on steps I to IV; constructed an initial extended administrative population 
database by age, sex and postcode of residence, and investigated different modelling approaches to 
obtain probabilities for weights that reflect uncertainty in the address. The tables are illustrative of 
the fractional counting approach and would need more work before providing valid population 
outputs. 

 Section 4.1 below provides a simple illustration of the hypercube demonstrating how the weight 
adjustments work. Section 4.2 describes our early work on developing residency models to obtain 
more informed address weights for improved distributions across geographies. It builds upon previous 
work within ONS to model the correct address of individuals recorded by administrative sources. 

4.1. A simple illustration of the hypercube  

The spreadsheet in Appendix 2 demonstrates how the weighted hypercube might be constructed.  It 
starts with Census records for 20 fictitious respondents in a table and 3 admin data sources, appended 
in another table to represent an initial integrated administrative dataset. Each administrative source 
covers a subset of the population and contains some errors. Weights are calculated to 1) ensure that 
each individual is counted only once, 2) provide a crude representation of coverage error in the 
administrative sources, and 3) modelled weights to represent known uncertainty in the administrative 
records such as the correct address.  The table representing the weighted hypercube contains a count 
of people for each combination of characteristics gender/age/location.   The example is intended to 
represent how the weights might be constructed for the hypercube but does not show the full 
methods that will be used to derive the weights in our prototype hypercube.  

4.2. Modelling address weights using linked administrative datasets 

Our aim is to produce address weights for individuals in our hypercube, using covariate information 
from the range of available administrative datasets as well as taking into consideration the inherent 
reliability and usefulness of each individual dataset. These weights allow individuals to be fractionally 
counted at conflicting addresses instead of being assigned a single correct address,  

The practical steps taken to accomplish steps I to IV of the hypercube development plan, can be 
summarised as:  
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I. Develop the initial extended population database from administrative sources using 2011 data 
(Section 4.1) 

a. Concatenate data from administrative sources linking through the DI (PDS, PR, HESA, 
ESC, WSC) 

b. Reduce the population database such that it contains a single row for each address 
linked to an individual (for cases where multiple sources contain the same address) 

c. Link to Census to create “truth” state, to model as dependent variable for each record 
II. Estimate the probability that the addresses recorded on the administrative data are the 

correct residential address for that individual using census responses as the truth (Section 4.2) 
a. Sample prototype extended dataset (stratified random sample) 
b. Conduct feature selection 
c. Implement weight modelling using logistic regression, support vector machines and 

random forests 
d. Run hyperparameter optimizations for specified models 
e. Evaluate model quality based on ability to be generalised to unseen ‘holdout’ dataset 

III. Develop an indicator that each individual within the database belongs to the target 
population, in our case this is usually resident population (i.e. has been or intends to be 
resident in the UK for a period of one year).  

IV. Calculate the initial hypercube by summing the probabilities (of whether each address 
recorded by the administrative process is the correct address) 

a. Find sum of individual weights by age for comparisons with the ‘true’ population 
counts 

As our hypercube was constructed using the DI linked to admin data sources and the 2011 Census, 
only including individuals identified on the Census, we don’t currently consider step III and consider 
that each individual is a member of our target population (usually resident).   

In order to cover a range of possible covariate relationships and modelling complexities, we initially 
consider the following models:  

• Logistic regression (LOGR)  
• Support vector machines (SVM) (Chang, C.-C. 2001) 
• Random forests (RF) (Genuer, R. 2018) 

The efficiency of fitting LOGR models will be beneficial when estimating the residency weights for 
larger sample / Census size populations, where machine learning based methods such as SVM and RF 
are more costly to fit on larger sets and can be more prone to over-fitting the available data. In order 
to quantify the fitting ability of the various models we measure the following metrics: 

• Accuracy / Balanced accuracy 
• Recall 
• Specificity 
• Precision 
• F1 
• AUC (Area under receiver operating characteristic (ROC) curve (Bradley, A. 1997)) 

These metrics are commonly used to determine the performance of machine learning / regression 
models, where the goal is to classify the data. Whilst we are not necessarily interested in the ability of 
the model to classify the data into “true” and “false”, they can give us measures to compare between 
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our models and to consider whether each model is over-fitting to the training sample when we apply 
the model to predict on the holdout dataset.  

Due to the structure of the hypercube, in order to utilise the listed models, we also must make the 
assumption that an individual may be found on several records, and these records may have several 
conflicting addresses, the sum of the new weights across individuals may sum to more/less than 1.  

The result should be that any estimates constructed from these weights should recover the higher-
level population, with re-distributing LA level, with the LA level estimates able to subsequently 
undergo benchmarking to known totals.  

In the following section we discuss in further detail how we constructed our hypercube samples, 
before deriving and selecting the covariate information.  

4.2.1. Constructing hypercube sample for modelling 

We constructed training samples (simulating a PCS, similar to the ABPE and ACID works) to be used in 
the initial feature selection and individual model hyperparameter optimisations as well as for the 
subsequent model comparisons when used to estimate population weights for independent holdout 
datasets. We take stratified samples (across all LAs) consisting of 1.5% of the hypercube, to represent 
our PCS. These samples are then linked to the census to be classified as either: 

• Matching and thus flagged as a record containing the individuals’ “true” address, or 
• Non-matching and thus flagged as not being the individuals “true” address 

These flags can then be used as the dependent variable for each of our models. Analysis of the initial 
model fits showed a propensity for allocating high weights for all records regardless of their true class, 
entirely mis-weighting the “false” addressed records. This is due to the records in the minority “false” 
record class having little influence compared to the much larger majority “true” class. Fitting to the 
heavily unbalanced (90% “true”, 10% “false) samples results in high metric scores (>0.9) for all bar 
specificity (~0.2) and balanced accuracy (~0.6). As we are interested in distributing weights between 
the conflicting addresses, as opposed to simply classifying the addresses, we may be better served by 
balancing the classes within our sample. There are a number of potential ways to balance the sample, 
either over-sampling the minority class to produce simulated records, by under-sampling a subset of 
the hypercube removing overrepresented majority class records, or by restricting the sample to 
records with known conflicts. 

We have initially implemented an over-sampling method to balance the classes and to give the models 
a better chance at weighting both the “true” and “false” records, having implemented a synthetic 
minority oversampling technique (SMOTE) on our training samples (Kovacs, G. 2019). SMOTE is a 
package within the imbalanced learn Python library, which can synthetically oversample minority class 
data in a binary classification data set. For example, if our class “0” has 1,000 entries and class “1” has 
5,000 entries, SMOTE can synthetically generate 4,000 more “0” observations in order to balance out 
the data. 

This is a particularly useful strategy when executing binary classification algorithms such as RF, which 
tend to underperform when we have an unbalanced data. It is worth noting, however, that not all 
classification algorithms require such balanced data.  
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SMOTE operates by synthesising new minority class instances between existing instances. In an 
instance where two class variables are used in the classification, this could simply be illustrated by 
drawing extra points along a straight line between two existing data points. In the below example 
(using the popular iris data set), the dark red circles represent the real instances of our minority class, 
with the light red circles being synthesised data points. This brings the class discrepancy up from 13:4 
to 13:12, a ratio which will result in far higher accuracies when using RF in particular.  

 

FIGURE 1. EXAMPLE OF SMOTE BALANCING METHOD 

Our data has more dimensions than shown in Figure 1, but the same principle applies. New data points 
can be synthesised between real data points in n dimensions, resulting in a far more balanced dataset.  

Whilst we used SMOTE to balance our sample classes, increasing the models’ ability to correctly 
allocate weights to the “false” records, it is not the only method we could incorporate to improve the 
class representation. Alternatively, we can produce samples by under-sampling from a larger subset 
of the hypercube such that we arrive at a more even distribution of “true” and “false” records. It would 
also be possible to consider the subset of records where there is at least one conflict,  however this 
has the potential to cause problems by creating a sample which actually contains more “false” records 
than “true”, as the requirement is at least one conflict however with multiple admin data sources 
there is the possibility of including records with several conflicts.  

4.2.2. Feature selection 

This section describes the features available for inclusion in our modelling of address weights, both 
previously utilised and derived specifically, for details on covariate derivation see Appendix 4.  For all 
individuals, and their potential address, we include seven covariates from the administrative datasets 
(age, sex, individual flags indicating source (PR, PDS, HESA, ESC, WSC)) as well as derive eight additional 
covariates. 

The age of the record (i) both informs on an individual’s status as usually resident, and acts as a 
measure for record reliability. The number of individuals registering at an address (ii) provides 
information on the turnover of population in an area according to each source. The count of consistent 
surnames at an address (iii) provides evidence of family potentially indicating reduced likelihood of 
misplacement. The fraction of conflicting records (iv) shows source address cohesion as a simple 
probability of finding each address across available records. The student status flag (v) aims to capture 
the behaviours of the student subpopulation, specifically with regards to conflicts due to incorrect 
placement according to the Census. The PDS activity flag has been shown to be highly indicative of a 
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record containing the correct address according to ABPEs. However, as the PDS data used to construct 
our hypercube is more recent than the reference Census data we are missing data between these 
dates (2011 – 2016) and potentially introducing misplacement when constructing our “true” address 
flags by linking 2016 PDS to 2011 Census. The inclusion of more recent comparative data will increase 
the usefulness of this covariate and as such we continue with the development within our prototype. 
The flag indicating the presence of multiple individuals with the same surname (vii) can be used to 
determine the presence of a family or single/unmarried individuals. Finally, we derive the distance 
between subsequently updated addresses (viii), calculated by determining the haversine distance (as-
the-crow-flies) between pairs of addresses in order of most recent update. 

These particular covariates were selected for inclusion in our prototype modelling in order to broadly 
capture a range of features related to each admin database, in terms of each individuals’ interactions 
with a specific source (frequency of interaction, recency of interaction), how they interact with a range 
of sources (source address cohesion), and the inherent design of each source (frequency of update, 
incorrect inclusion/removal of records). 

Whilst additional covariates (such as income and benefits status) are planned to be included in the 
future and have been shown as effective as predictors of usual residence and correct address (ABPEs) 
we focus on these fifteen covariates in this paper. The potential impact of inclusion of these additional 
covariates is discussed further in Section 5.  

4.2.3. Model selection, hyperparameter optimisation and specification 

In prototyping the fractional counting methodology on our hypercube we are continuing to derive and 
add further covariate information to our model, as such the model specifications are tweaked so that 
we can understand the importance / usefulness of each variable and their interactions with other 
variables. Further to this, defining the importance of each introduced or removed variable is not trivial 
as the importance of a variable may be due to its (possibly complex) interaction with other variables. 
At this stage we consider relative rankings of the ‘importance’ of features as determined by  

• RF impurity-based feature importance (normalized total reduction of fitting error attributed 
to each feature) (Louppe et al, 2013) 

• Automatically generated LOGR model testing (‘glmulti’ (Calcagno & de Mazancourt, 2010)) 

Impurity-based feature importance involves measuring how the fitting error changes when individual 
variables are held consistent whilst another is varied, to determine the proportion of improvement 
attributable to each. To determine the importance placed in each variable when applying LOGR, we 
combine the results of multiple-model spawns, iterating through specifications until the model with 
the lowest fitting error is identified, with the results of comparing p and z-values. The ranking of 
variable importance for the different models can be found in Appendix 5. In brief however, it appears 
that features considered consistently important are: 

• Age 
• Postcode fraction 

With the consistently least important shown to be: 

• Distance 
• PDS activity 
• Student flag 
• Source HESA 
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One thing to note from the importance analysis is how PDS activity is deemed of lower importance, as 
well as the absence of Source PDS as a variable of greater importance as suggested by the results of 
the ABPE work. This is likely due to the reduced PDS data we used to construct the hypercube, with 
data only available post 2016, the effects this may have and how the introduction of more up-to-date 
data may change the model specification will be discussed in Section 5. The results from the multiple-
spawned LOGR models suggest that the optimal model includes all the currently available covariate 
information and as such we used all variables for each of the models (LOGR, SVM & RF).  

To determine the optimal hyperparameters for both the SVM and RF models we conducted parameter 
sweeps. They covered the range of SVM cost (c), boundary dissipation (gamma) and error-tolerance 
(epsilon) values, to produce corresponding fitting metrics for comparison and to allow us to select 
parameters that result in model fits with different relative metrics. Similarly, for our RF models we 
again ran a parameter sweep to optimise 1) the number of trees, 2) the tree depth, 3) minimum 
samples per leaf and 4) minimum samples per split. The resulting hyperparameters for the SVM and 
RF models, used going forward with fitting our models and testing on the holdout samples are: 

• SVM 
o C = 1 
o γ = 0.0625 
o ε = 0.1 

• RF 
o # of trees = 100 
o Depth = 20 
o Minimum split = 2 
o Minimum leaf = 5 

Using the resultant fits (to the simulated PCS) we test the performance of each model by predicting 
the address weights for individuals in separate holdout test samples. The holdout datasets act as 
intermediary proxies for the hypercube, before we implement the methods on the full-size hypercube. 
As such, our holdout datasets are currently formed by taking a 5% sample of the hypercube, stratified 
across LAs to maintain LA distributions. In the following section we discuss the resultant model fitted 
weight distributions, with their respective metrics, and how fractionally counting individuals affects 
the population estimates.  

 

5. Discussion 

In this section we discuss the resultant weight distributions of each of the available models (LOGR, 
SVM and RF) in Figure 2, a summary of the performance of each model by comparing their ROC curves, 
and comparisons between the predicted weights for each of the models when testing on our holdout 
hypercube proxy samples and the “true” population weights. In terms of pure classification 
potential, both the LOGR and RF models performed similarly well, with the fitted LOGR metrics <~3% 
of RF across all metrics, and with both outperforming the SVM both in terms of the raw metrics 
recorded as well as computational complexity (runtime). The runtime cost is also a key consideration, 
as the time per fit and prediction for each SVM simulation is significantly (~30-50x) greater than that 
for RF, with LOGR taking even less time again to complete each simulation. Even when considering the 
cumulative weight predictions (Figure 3) LOGR and RF perform similarly in capturing the higher-level 
population weights while SVM, although appearing to return weights on-average closer to the true 
weights, appears to be qualitatively worse.    
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Figure 2 shows the resultant address weight distributions for each model ((a) – LOGR, (b) SVM, (c) RF). 
Along the x-axis are the model predicted weights, with the y-axis indicating the density. For 
comparison, if we assumed an address was either entirely “true” or “false” we would expect the 
weight distributions to be centred at their “truth” state with zero deviance, with “true” (blue) records 
all weighted 1.0 and “false” records all weights 0.0.  

 
We find, across all fitted models, skewed weight distributions with peaks towards their respective 
truth states (weight = 0 / 1), tailing off towards the opposite state, with the peak for “true” 
records greater (+~0.15 LOGR to ~2.2 RF) than the “false” records. However, each model has different 
propensities for allocating weights throughout the range for both “true” and “false” records, with the 
distributions for each respective state in the LOGR fit (Figure 2(a)) appearing to be qualitatively 
symmetrical, with similar densities for each record type towards each respective peak. Looking at the 
SVM fit (Figure 2(b)) we see similar peaks at the truth states; however, the peaks have shifted further 
from the extremes (at 0 & 1). Additionally, with the SVM fit there appears to be distinct peaks at both 
ends of the distribution, potentially as a result of the non-linear nature of SVM fitting, which is not 
present in either the LOGR or RF fits. The resultant weights distribution from the RF fits (Figure 2(c)) 
is qualitatively similar to that of the LOGR fit, however with the peak at 1.00 increased and the peak 
at 0.00 reduced. This suggests the model has a greater propensity for weighted the “true” records 
more heavily towards 1.00, with the weights for “false” records more uniformly distributed 
throughout the range.  
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FIGURE 2: (A) LOGR (B) SVM (C) RF PREDICTED WEIGHT DISTRIBUTIONS WHEN FITTED TO SIMULATED PCS, 
COMPARING MODEL PROPENSITY FOR WEIGHTING RECORDS IDENTIFIED AS BOTH “TRUE” (BLUE) AND 
“FALSE” (RED) ACCORDING TO CENSUS SPECIFIED ADDRESS 

FIGURE 3: COMPARISON BETWEEN CUMULATIVE PREDICTED WEIGHTS (SOLID LINES) AND TRUE POPULATION WEIGHTS 
(DASHED LINES) BROKEN DOWN BY SEX (FEMALE – RED, MALE – BLUE) FOR (A) LOGR (B) SVM (C) RF 
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Figure 3 shows the resultant estimated population weights (solid lines), broken down by sex (female 
– blue, male - orange), compared to the “actual” weights when considering only the “true” Census 
address records (dashed lines). Figure 3(a) shows the predicted weights using LOGR, Figure 3(b) the 
weights using SVM, and Figure 3(c) the results of RF fitting. Each of the models appears to under-
weight the population, by approximately 20% for all ages except those in the range 20 – 40 years, 
where the under-weighting is approximately 45%. The broad underweighting may be due in part to 
the dilution of the dataset through balancing with simulated data. Effectively introducing a broad 
propensity to underweight which becomes apparent when the models are used to predict on the 
holdout dataset where the “true” address record class is the majority again. The discrepancy for 
individuals 20 – 40 years old may also be explained by the weaknesses in our current hypercube 
prototype created using the DI. As the earliest available linked PDS dataset was from 2016 we are 
missing those records created in the meantime, whilst also potentially misplacing individuals who are 
present on the 2011 Census but at a different address than that indicated in the PDS dataset. The 
potential for greater churn and misplacement on administrative records for individuals within this age 
range could potentially explain the underweighting seem here, especially as a major benefit of the 
PDS dataset is its increased frequency of update compared to the PR. It could be expected that if the 
delay between the reference date (Census 2011) and admin data (PDS, 2016) was reduced we would 
also reduce this weighting discrepancy. Additionally, the introduction of CIS data, previously shown as 
a good indicator of correct address especially for working age individuals, would likewise be expected 
to improve this discrepancy.   
 
Comparing the different models, it appears that qualitatively the LOGR and RF fits produce broadly 
similar weight estimates, broadly allocating lower weights with greater emphasis for ages 20 – 40. 
However, whist they appear to respond worse than SVM in terms of reproducing population weights, 
when considering how well they qualitatively capture the true weights they appear to perform better 
than SVM. The SVM estimated weights appear more oscillatory, less capturing the qualitative 
dynamics and instead potentially over-fitting to the training sample. The resultant estimates from 
LOGR and RF appear like they might be good candidates for benchmarking to the true weights whereas 
the SVM weights might not be so easily benchmarked. As previously mentioned, fitting LOGR and RF 
and subsequent prediction on a test dataset was significantly more efficient than SVM, with runtimes 
being longer for smaller training sets (~0.1% Census) and intangible at the sample sizes we would want 
to use it for. Whilst there is evidence that SVM modelling does manage to produce estimates with 
similar accuracy to the other methods, occasionally being second to RF in training and close behind in 
testing, the issue in scaling up combined with the relative accuracies of the alternative methods 
suggests we may be better off focusing on LOGR and RF for future model development.   
 
In summary, whilst we could consider each of the models for further development based on the pure 
metrics and resultant predicted aggregated weights, with each potentially outperforming the 
others when considering different subsets of the qualitative and quantitative measures we applied. 
However, prefaced by our future aim to apply these methods to an extended hypercube of 
administrative data with the potential to continue to grow larger with each additional dataset added 
and covariates derived, continuing with SVM becomes increasing intangible. This is in large part due 
to the increased runtime relative to both alternative models, especially when scaling up the size of 
the datasets involved, compounded by the lacklustre metrics and potential for overfitting. Taking this 
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into consideration, potential future development would focus on LOGR and RF 
as candidate models for predicting address weights for use in fractional counting.  

 

6. Future work   

Stage 1: Proof of concept  

To date we have focused on producing a prototype of the hypercube for the key population 
characteristics (age, sex and location of residence), as outlined in steps I to IV in Section 4 and 
Appendix 1. This has involved constructing an initial extended administrative dataset for 2011 and 
estimating initial weights for the hypercube based on comparisons with 2011 adjusted census 
(representing the “true” population).  The aim with this initial stage of the project is to provide proof 
of concept and to inform the direction of future work plans.  

Progress to date looks promising but has been limited as we have not been able to obtain all the key 
administrative sources for 2011, so whilst we have been able to explore and train potential models, 
we have not been able to fully evaluate these.  To complete these stages, we will also need to consider 
the best methods for classifying “usual residence”, the definition used for official population outputs.  
We will continue to shape our research according to the research findings under the PMST programme 
particularly in developing the ABPEs and ACID projects.  

Stage 2: Rolling and expanding the hypercube  

Assuming proof of concept, the second stage of the project will investigate how we roll the hypercube 
forward on a continuous basis over time, this will include the use of continuous ONS surveys with 
updated administrative data via an incremental process and assess the relative benefits of parametric 
versus algorithmic approaches.  

As more administrative data becomes available and our understating of their coverage and potential 
use for capturing census like population characteristics develops, the hypercube can be extended to 
include additional dimensions. In doing this, we will consider the benefit from making use of wider 
combined administrative and survey data as well as other open data sources.   

Stage 3: The methods for auditing  

We will need to consider how to measure uncertainty in the hypercube and the stability of the models 
over time.  It is envisaged that a purposely designed coverage survey will provide a periodic quality 
review (audit) of the hypercube; key questions are whether a purposely designed coverage survey will 
be sufficient and the required sample size of this.  Alternatively, would a large-scale collection more 
similar to a full or partial census be needed.  

Additionally, we will need to consider how we measure and communicate the uncertainty in the 
outputs derived from the hypercube. Can we estimate the main underlying variance through the 
model-based components of the hypercube, and can we make use of a simulation set up to 
understand this. 

Further considerations  

We will consider how we ensure the coherence of all population statistics. This will include methods 
to benchmark the more detailed multivariate outputs from the hypercube to higher level population 
totals; how we produce household outputs (for example, household size and structure); and how we 
encompass the components of population change (births, deaths and migration). 
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Appendix 1: Steps in developing the initial hypercube (summary from Zhang 2019) 
 

I. Develop the initial extended database from administrative sources using 2011 data and 
compare the administrative counts with 2011 census counts for each population subgroup to 
provide weights representing coverage of the combined administrative dataset.  

II. Estimate the probability that the addresses recorded on the administrative data are the 
correct residential address for that individual. These probabilities are obtained using linked 
census and administrative data. The census address is assumed to be the correct address, so 
for this core (linked) population predicted probabilities may be obtained using auxiliary 
characteristic information and an indicator of whether the address on the admin source is 
correct or not.  If we treat the core population subset as a non-probability sample from the 
admin population data set and assume the selection is non-informative, we can use this core 
data set to make predicted probabilities for unlinked individuals in the extended admin data 
base. Note that the fractional counter is unbiased provided that the probabilities for the true 
address can be correctly determined by the indicators and covariate information (i.e. the 
model fit is good).  

III. Develop an indicator that each individual within the database is usually resident (i.e. part of 
the target population). Zhang (2019) suggests three possible methods, using a combination of 
census, census coverage survey and/or sampling from linked administrative and census data. 
These suggestions draw upon methods used, and the experience of other countries (e.g. Latvia 
and Estonia). We will consider these alongside the methods applied for the ONS, Admin Based 
Population Datasets for England and Wales.  

IV. Using the fractional counter, the population estimate for each area of interest is the sum of 
the probabilities (of whether each address recorded by the administrative process is the 
correct address) multiplied by the (0,1) indicator that the address in the administrative source 
is within the target area of interest and is part of the resident population.  The probabilities 
are summed for all individuals within the admissible admin database. 

V. Characteristics of the population can be easily estimated using the fractional counter where 
the (correct) value for the variable of interest is available in the administrative dataset. Where 
the administrative sources record different values for the same individual across sources, the 
probability of each value being correct may be estimated (as for address) provided there are 
good covariate data available (which are correlated with the variable of interest). Methods to 
reconcile other issues with the characteristic information (e.g. definitional issues, coverage 
issues) are being investigated as part of the transformation program.  

VI. Rolling forward the initial extended database and hypercube over time:  Updating the model 
parameters will be nearly continuous over time, similar to incremental learning in machine 
learning. It is likely that new data would be available for a subset of individuals in the extended 
administrative dataset over time. The exact properties of the new data would determine their 
use in the rolling process. For example, depending on the sample design, survey data (with 
known inclusion probabilities) may be used to refit the model with updated indicators for 
erroneous enumeration or misplacement whilst administrative data on the other hand may 
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provide updated covariate information.  The estimation precision is determined by the size of 
the updated datasets and is likely smaller than the initial census-based estimates.  Potential 
approaches for the rolling process include: 

Parametric – e.g. logistic regression models where it is assumed there has been no change 
for individuals without new data and Empirical Bayes Prediction allowing this assumption 
to be avoided. 

Algorithmic – e.g. Decision tree in which part of the updated observations are used for 
training the model and part for validation. 

VII. Periodic auditing of the estimated population totals:  It is envisaged that a purposely designed 
coverage survey could be used in an audit-assisted approach that validates the underlying 
extended population database periodically whilst the continuous ONS surveys are used with 
the admin data in the incremental rolling process. Zhang (2019) notes that previous 
investigation of the audit sampling inference approach for statistics based on big data, 
demonstrated negligible variance of the point estimates compared to their potential bias and 
therefore rendered the conventional hypothesis testing inadequate. He proposes a novel 
accuracy measure which also has the advantage that the audit sample can be smaller than 
usually envisaged in a coverage sample. 

 
Appendix 2: Example hypercube provided alongside this paper. 

 

Appendix 3:  Summary of work previously undertaken in ONS on modelling residency 

ABPE V2 

Version 2 of the administrative population dataset for the ABPES included use of a modelling approach 
to predict the most likely address where this could not be determined using logical processes.  The 
approach was to use a logistic regression model with simulated population coverage survey data, and 
administrative covariate information (for both the individual and other residents at the same address) 
to calculate probabilities that the CIS and PR address records were correct.    

The simulated survey data was obtained by taking a 1% random sample of 2011 Census records from 
each local authority. The address reported in the Census sample was assumed to be the correct 
address for that individual. 

Covariate data included: 

• number of persons registering at the PR and CIS addresses in the years subsequent to their 
own registration 

• number of persons who the individual shares the same surname with at the PR and CIS 
addresses 

• difference between the CIS address start date and the PR modification date 
• a flag indicating evidence of benefit ‘activity’3 at the CIS address  

This last covariate was obtained from benefits data supplied by DWP and included: the National 
Benefits Database (NBD), Single Housing Benefit Extract (SHBE) and Tax Credits dataset.  
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The regression coefficients generated by the model were then used with the relevant covariate values 
for individuals on the SPD dataset to resolve address conflicts. The individual was assigned to the 
address scoring the highest probability.  A description of methods is available at here. 

The analysis reported individuals were up to three times more likely to be resident at the CIS address 
where they received a state benefit, depending on which benefit this was. It was also found that 85% 
of conflicting SPD records in 2011 were assigned to the same address as found on the 2011 Census 
when using the model, although this percentage was found to vary across age groups. 

Address Centric Admin Combined Intelligence Dataset (ACID).  

The ACID project has been initiated to investigate contingency plans for lower than expected response 
to the 2021 Census. It aims to model an indicator for correct address from linked admin data and 
census rehearsal data in order to test potential methods for making adjustments to census data for 
non-responding households.    

The analysis models 2019 Census rehearsal responses linked to the PDS and other administrative data, 
at the record level.  The dependent variable is a binary indicator of whether a link was made between 
the rehearsal response data and the PDS records. A positive link is taken to indicate that the address 
information in the PDS data can be considered correct for that individual. The indicator is modelled 
against covariate data representing the respondent’s administrative attributes using a logistic 
regression model.   

Covariate data included: 

• indicator where a request that record is removed from PDS data (can be from patient or 
practise) has been made 

• similarity of surname with others associated with UPRN between PDS and Council Tax data 
(similarity score using Levenshtein edit distance) 

• similarity of surname with others associated with UPRN between PDS and English School 
census (similarity score using Levenshtein edit distance) 

• Flag that PDS and ESC have child of same age associated with address 
• Difference between dates of data source records 

The analysis is at an early stage, but initial results are reported as promising.  Further detail of the 
ACID project is available in the internal working paper presented to the Census Research Assurance 
Panel, November 2020. 

 

Appendix 4: Modelling covariate definitions and variable names 

Covariates currently considered 

• Individuals age (age) 

• Individuals sex (sex) 

• Source flags (source_pds, source_pr, source_hesa, source_esc, source_wsc) 

o True if individuals address identified in admin dataset 

• Time since record creation/most recent update (record_age) 

o Taken to be time between latest record update & reference date (Census 2011) 

https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/articles/developingourapproachforproducingadminbasedpopulationestimatesenglandandwales2011and2016/2019-06-21
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• Number of persons registering at the admin address in the years following their own 

registrations (new_moves_count) 

o Count of individuals with more recent updates to admin records at each address 

for each individual at the address  

• Number of persons who the individual shares the same surname with at the admin 

address (surname_count) 

o Count of matching surnames at each address 

• The fraction of all records and individual is identified on which contain each conflicting 

address (postcode_fract) 

o Fraction of identified admin datasets that each individual’s address in found on 

• A flag indicating ‘student’ status (student) 

o True if individual has a recent HESA/ESC/WSC record 

• A flag indicating evidence of activity on the PDS database within 12 months (pds_activity) 

o True if PDS record update within 12 months 

• A flag indicating multiple residents with the same surname (family) 

o True if surname_count > 1 

• Distance between conflicting addresses (km) 

o Distance between subsequently updated addresses  

o Haversine distance (as-the-crow-flies) between pairs of addresses in order of 

most recent update 

Appendix 5: Covariate importance analysis results 

The most ‘important’ features are shown in Table 1, with the apparent least ‘important’ in Table 2.  

TABLE 1: MOST IMPORTANT FEATURES IDENTIFIED FOR EACH MODEL 

Rank Logistic regression Random Forest 
1 source_pds age 
2 age postcode_fraction 
3 sex surname_count 
4 postcode_fraction source_pr 
5 source_esc new_moves_count 

  

TABLE 2: LEAST IMPORTANT FEATURES IDENTIFIED FOR EACH MODEL 

Rank Logistic regression Random Forest 
1 distance source_wsc 
2 pds_activity pds_activity 
3 record_age distance 
4 student source_hesa 
5 source_hesa student 
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The output from the automated model selection (‘glmulti’) running logistic regression shows that the 
current optimal model includes all the available covariate information, suggesting that there may be 
inter-variable relationships which are not necessarily clear from the output importance metrics. 
Additionally, as we will continue to update the covariate selection as further data is acquired, we will 
continue to retest the model specifications as and when this occurs.  

  
Appendix 6: ROC curves for fitted logistic regression (LOGR), support vector machines (SVM) and 
random forests (RF) models to holdout dataset  
 
 
 

 

 

 

 

 

 

 

 

APPENDIX FIGURE 1: ROC CURVES FOR FITTED LOGISTIC REGRESSION (LOGR), SUPPORT VECTOR MACHINES (SVM) 
AND RANDOM FORESTS (RF) MODELS TO HOLDOUT DATASET 

Appendix 6 Figure 1. shows the resultant receiver operator characteristic curves (ROC curves) for the 
models tested on the holdout population sample, along with the respective AUCs. According the these 
curves the most effective model for classification purposes would be the RF model, with the greatest 
sensitivity achieved for a corresponding specificity compared to the alternative models. The SVM 
returned the least effective and useful fit, with both the sensitivity and specificity of the test fit 
suffering. This could potentially be a result of overfitting by the SVM model on the training PCS that 
does not generalise to the holdout set, resulting in unexpected dynamics along the classification 
boundary (which is shifted to produce the ROC curve). The LOGR fit produced a ROC broadly similar 
to the RF model’s ROC, but with a distinct dip at approximately sensitivity = 0.6 and specificity = 0.8 
and so within this region of the metric space the RF model would be more effective than the LOGR 
model.  
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