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Requested actions from the panel 

The assurance panel is asked to provide feedback and suggestions on the proposed model 

selection approach. Thoughts on the following would be appreciated: 

• pre-selection of key estimation variables 

• use of K-fold cross-validation with stepwise selection when selecting interaction terms 

• use of prediction errors estimated from cross-validation for decision making, rather than 

significance levels 

• limitations around goodness-of-fit / diagnostic checks 

 

0. Executive summary 

The 2021 Census population estimates will be derived from a combination of the Census data 

and the Census coverage survey, which measures the census coverage. The coverage is 

estimated through a statistical modelling, where the model is not specified in advance but is 

obtained through a process which works towards finding the best model, given some 

constraints. The chosen model will have an impact on the census population estimates, so it is 

important that the model selection process is designed to be robust, transparent and follows 

best practice as much as possible. 

We intend to use a structured approach to model selection using a combination of standard 

techniques. This paper will describe this model selection strategy. Briefly, this will work as 

follows: 

• Pre-selected key variables (those most important for outputs) will be included 

in all versions of the model. These include accommodation type, age-sex group, 

economic activity, ethnicity, household size, marital status and tenure Other 

variables (e.g. address one year ago, born in the UK) will be assessed as 

potential candidates for inclusion. 

• Standard descriptive and diagnostic tests will be performed to evaluate 

candidate models, and numerical issues checked. 

• Only variables included in the model may also be included as potential 

interaction terms.  

• Interaction terms will be selected within K-fold cross validation (using 5 folds) 

with stepwise selection. 

• Prediction errors estimated from cross-validation will be used for decision 

making, rather than significance levels. 
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• Selected model candidates will be assessed for goodness of fit, and model 

diagnostics will be performed. 

 

1. Introduction and context 

The coverage estimation of the 2021 Census of England and Wales has been developed around 

the mixed effects logistic regression approach [Račinskij 2018, Račinskij 2019, Račinskij and 

Hammond 2019, Račinskij 2020, Burke and Račinskij 2020, Hossain 2020, Račinskij 2021]. 

In all the above research, availability of a reasonable model of the coverage probabilities was 

assumed. For the live processing, such a coverage model should either be prespecified in 

advance based on the past modelling experience and expert knowledge or selected from the 

space of available models once data for modelling become available. This report discusses the 

model selection process and related concepts proposed for the 2021 Census coverage 

estimation. 

Models are primarily required to estimate the census coverage probabilities given a certain 

combination of household and individual characteristics such as age-sex, tenure, economic 

activity, ethnicity, etc. Once a suitable model is fitted and the coverage probabilities are 

estimated, the entire census data are scored. In other words, the model is used to compute the 

fitted coverage probabilities for every census record. These fitted probabilities are transformed 

into coverage weights in the case of undercoverage or used directly in the case overcoverage 

to up / down-weight each census record based on the observed set of characteristics. The 

coverage error corrected population size for a domain of interest is obtained by summing up 

the weighted census records that belong to the domain. 

There are several reasons motivating such a modelling approach to be used for the census 

coverage and error correction. The modelling approach allows reduction in the number of 

estimated parameters. Assuming that a model is carefully selected, producing indirect estimates 

of the domains of interest (say, age-sex group by local authority) results in higher accuracy, 

measured in terms of the mean square error, compared to the approaches where the direct ratio 

estimates are first obtained for some estimation domains (say, age-sex group by hard-to-count 

by estimation area) followed by indirect estimation of the domains of interest (age-sex group 

by local authority). For instance, there are approximately 11,000 such estimation domains for 

age-sex by hard-to-count by estimation area (35 age-sex groups, roughly 3 hard-to-counts per 

estimation area, 106 estimation areas), meaning that 11,000 parameters need to be estimated. 

The regression approach aims to reduce substantially the number of parameters that are 

estimated, thus providing variance reduction. Of course, direct estimation methods tend to have 

smaller bias compared to indirect methods. However, there exist coverage estimation specific 

biases, such as heterogeneity bias, that affect the direct estimation methods through the dual 

system estimation (dual system estimates are pooled across the ratio estimation post-strata and 

then used with the ratio estimator). In principle, when enough covariates are available, the 

regression approach tends to outperform the simple dual system estimator. Moreover, an 

additional estimation bias may be incurred when the direct ratio estimation is combined with 

some small area methods to estimate the size of domains of interest. The research cited above 

found that the regression approach gives a better overall balance between the variance and bias 

compared to the methods used in 2001 and 2011, though not necessarily uniformly. 
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The data being modelled are the Census coverage survey linked to census data (within the 

coverage survey sample areas for the undercoverage modelling and outside the sample areas 

for the overcoverage modelling). The target sample size of the coverage survey is around 

320,000 – 335,000 households or roughly 755,000 individuals across all local authorities of 

England and Wales. The actual number of observations available for modelling is smaller due 

to household and within household non-response and because the coverage models are fitted 

to the margins of the two-way tables (say, when modelling the census coverage, all the 

observations of the census coverage survey determine the number of observations in the 

modelling exercise). The ultimate complexity of models supported by the data also depends on 

the observed coverage (as opposed to the real coverage that can differ from the observed due 

to the dependence between the two sources) of a source that is being modelled. 

There are four modelling exercises required, as models are needed for the following stages of 

coverage estimation:  

• undercoverage of individuals in the general population, 

• undercoverage of households in the general population,  

• overcoverage in the general population,  

• individual undercoverage in the communal establishments.  

All models under consideration are expected to reflect well the differential coverage patterns 

so that reliable population totals for the domains such as age-sex by local authority can be 

produced. On the other hand, the number of estimated parameters should be kept reasonably 

small (‘small’ can be quite large for some of the modelling exercises like undercoverage of 

individuals in the general population). 

While all these models have many common attributes (logistic or mixed effects logistic that 

can produce high quality indirect estimates for multiple demographic groups) each of the 

modelling exercises may have its own challenges. For instance, the general population 

undercoverage modelling uses very large data sets which presents various issues. For instance, 

global goodness-of-fit tests show lack of fit unless overfitting. On the other hand, modelling 

the undercoverage in communal establishments may be difficult due to the small number of 

observations available. Nevertheless, the expectation is that good quality domain estimates will 

be produced. Thus, model selection procedures and systems are required to fulfil the specific 

demands of the census-based population size estimation and be flexible enough to 

accommodate the differences between modelling exercises for different coverage estimation 

stages. 

There are also practical constraints that shape the selection procedures and system. It is 

expected to have a processing stage when the partial census and coverage survey data are 

available for some testing and tuning. Once the entire data for the coverage estimation are 

ready, there are six weeks available for the coverage estimation processing. This processing 

window includes the final stages of pre-processing, conducting all modelling exercises listed 

above, doing the dependence bias adjustment, waiting for the national adjustment sex ratios 

benchmarks to be produced, applying the national adjustment, and running variance estimation 

(which can in principle extend outside the six weeks window). It means that there are around 

three weeks for all modelling exercises. Therefore, the selection procedures must be well pre-

specified and implemented in advance. In addition, a high level of automation in processing is 

required. Another practical consideration is software. All the research for the coverage 
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estimation of the 2021 Census was carried out in SAS. Since the model selection system needs 

to be integrated with the coverage estimation systems (which is derived from the research 

environment written in SAS) and the fact that the model selection system itself partly re-uses 

existing code and largely re-uses expertise and optimization techniques, the selection system 

itself is implemented in SAS. 

The structure of this paper is as follows. In chapter 2 an overview of potential model selection 

methods is presented and each is assessed for its suitability for the coverage estimation. Chapter 

3 discusses general principles of the model selection process and proposes a selection system 

using the suitable methods from chapter 2. Goodness of fit and model diagnostics is discussed 

in chapter 4. Finally, chapter 5 outlines the methods for resolving issues around localized lack 

of fit. 

2. An overview of several model selection methods and their assessment for the 

coverage estimation 

In this chapter several model selection methods that have been considered for the census 

coverage estimation are discussed and assessed in terms of their suitability for the task. 

Prespecified model based on expert knowledge or purpose of a model. Numerous coverage 

modelling exercises using the data from 2001 and 2011 Censuses were conducted over the 

years for research purposes and for coverage estimation simulation studies. Therefore, at least 

in principle, there is sufficient experience to allow us to determine in advance what a reasonable 

model should look like and therefore simply prespecify (or nearly prespecify) all models. 

However, having a completely or nearly completely prespecified model means that an 

opportunity of selecting ‘near the best’ model given the observed data may be missed and the 

estimation could be suboptimal. In addition, our research using simulation data shows that 

careful selection of interaction terms is crucial in the coverage modelling. While some 

important interactions may be known in advance, there is always a chance that either some 

important interactions will be missed, or those included will be redundant. Also, a careful 

model selection requires special attention to potential numerical issues such as singularity 

covariance matrix, quasi-complete data separation, etc. and a prespecified model can have 

numerical failures. Therefore, the completely pre-specified approach was ruled out. 

There is some room and even a need for model pre-specification, though. First, given that 

population size estimates should be produced by certain key census variables (for the general 

population these are accommodation type, age-sex group, economic activity, ethnicity, 

household size, marital status and tenure) it is reasonable to have all these variables as main 

effects in our models. Actual categorization of these variables can be altered if needed (see 

below). Also, the way the coverage survey was designed and the sample allocated means that 

the hard-to-count variable (design variable) must enter every model as a main effect. Therefore, 

we will design the model selection system to be flexible enough to explore any preselected 

model. This will allow a set of reasonable preselected models (main effects and interactions) 

to be passed through the system, checked for numerical issues and assessed for goodness of fit. 

Full model. In some applications, it is possible to include all effects into a model. Such an 

approach effectively avoids any search for a model in the space of possible specifications. It 

includes all statistically significant and insignificant effects in the model.  
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It is not a suitable option for the coverage estimation task. First, since the interaction terms are 

very important for the coverage estimation, there is a question of what the highest order of 

interaction that should be regarded as an effect is. Second, choosing the full model (assuming 

that interactions are included) contradicts the goal of keeping the variance of the population 

size estimates low by having fewer parameters than the direct ratio method would have had. 

Essentially, the full model will lead to undesired overfitting. Third, the full model is likely to 

be numerically unstable and thus unreliable and unsuitable for the task. 

While the full model is rejected, it is technically feasible to explore the performance of the full 

model (with up to nth order interactions) trimmed for the numerically unstable effects. As this 

can be useful to benchmark against other models, we will ensure that some sort of a full model 

(say, the model with main effects and all second order interactions) can be passed through the 

system and the system will return the fullest numerically stable model. 

Model averaging. In this case several plausible models are specified independently and their 

parameter estimates are averaged. There are several reservations regarding this approach. First, 

a selection procedure would still need to be designed and implemented to produce the models 

that are being averaged Therefore, decisions about how the individual models are selected are 

still required. Second, arguably, the model averaging pays off when different models give very 

different predictions. However, experience from the coverage estimation research and 

simulations shows that once several reasonably well specified and numerically stable models 

are selected, the results between these models are often quite similar for the majority of 

domains. Moreover, competing models often have similar issues with the same domains. This 

can be explained by localised peculiarities or data collection failures. Sometimes, such 

localised issues can be addressed by fitting a very complex model, say, a model with random 

slopes. Such complex models may solve the issue of unsatisfactory fit in a handful of domains, 

but their parameter estimates have very large standard errors and model averaging seems 

impractical in this case. 

Therefore, model averaging is ruled out in general. However, our model fitting approach will 

need a way to deal with localised issues and problems with numerical stability, which we are 

calling issue resolution. We propose in chapter 5 a practical averaging-based way of dealing 

with localised issues called domain averaging. 

Purposeful selection. Detailed discussion of this selection approach can be found in Hosmer 

et al., 2013. This approach stresses careful univariate analysis of each variable that can enter 

the model, exploring possible transformations of continuous effects. This is followed by 

bivariate analysis of the pairs of variables that can be considered for interactions. Based on 

these analyses the main effects model is specified and analysed for dropping or altering effects. 

Once the preliminary main effects model is selected, each plausible interaction is added and 

analysed. Those individually entered interactions that are significant at a certain level go into 

the model with multiple interaction effects. The model with interactions is analysed in a similar 

way to the main effects only model. 

The purposeful selection is attractive because of its careful consideration of the individual 

effects which is useful in avoiding various modelling issues as the model gets more 

complicated. This is especially applicable for the bivariate analysis of the possible pairs for 

interactions. Even if particular main effects are planned to be included irrespective of their 

statistical significance, such univariate considerations are important. First, there are non-key 
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variables that can be good candidates for modelling. Second, even the variables that are going 

to be in the model may need some analysis to establish possible collapsing of the categories if 

this is needed. 

Unfortunately, when it comes to considering interactions, the purposeful selection becomes 

intractable in the case of coverage estimation: for the general population undercoverage models 

there is a large choice of plausible interactions that are individually significant. Essentially, the 

purposeful selection becomes cumbersome and computationally infeasible for the appropriate 

consideration of the interaction terms. 

However, it is sensible to pursue elements of the purposeful selection method up to and 

including addition of each individual sensible interaction into the main effect model, but seek 

another approach for selection of interactions. 

Best subset selection. Best subset fits all possible models and then selects the best fitting one 

based on a chosen criterion. It is a tempting approach, but it is rejected due to being 

computationally infeasible in the time available. To see why, we can consider second order 

interactions. It is difficult to carry out correct calculation of the number of possible models or 

even to calculate the number of models for a certain number of parameters. For simplicity, just 

consider the number of possible interactions (which is different from the number of estimated 

parameters). If there are roughly 120 possible second order interactions, then there are 7,140 

possible models with exactly two interactions, 280,840 models with three interactions, 

8,214,570 models with four interactions and so on. 

LASSO (least absolute shrinkage and selection operator). LASSO is one of the regression 

methods that performs a shrinkage of parameter estimates. The parameter estimates are 

obtained by solving a constrained optimization problem which, under certain choices of the 

constraining or tuning parameter, results in some of the parameter estimates taking zero values. 

Therefore, the LASSO can be seen as a model selection method. 

The LASSO was originally developed for continuous variables. Most of the variables in the 

coverage estimation are categorical. There are several attempts to extend the method to work 

with categorical variables, such as the grouped LASSO [Yuan and Lin, 2006]. The problem of 

the standard LASSO when categorical variables are present is that the selection results may 

vary depending on the coding of categorical variables. However, the issue encountered when 

testing the grouped LASSO method for use in the coverage estimation was running time that 

was too long (even with multithreading) for any practical purposes. Therefore, this approach 

was ruled out. 

Nevertheless, the recent attempts to use the LASSO after carefully removing all the interactions 

leading to numerical instable results, showed feasibility of having the LASSO approach for 

additional reassurance. 

Stepwise selection. The stepwise selection is a compromise best subset selection method. 

Perhaps the most widespread version of the stepwise selection is when the forward selection is 

followed by backward elimination. Starting from an empty model (or a set of effects that is 

forced into the model), an iteration of the stepwise selection is as follows: on the forward 

selection step, an effect satisfying an entry threshold and making the biggest improvement to 

the fit is added from the candidate effects. On the backward elimination step, an effect not 

satisfying a stay threshold and making the smallest improvement to the fit is removed. This 
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iterative procedure continues until, given the entry and stay thresholds, no effect can be added 

or removed. 

The stepwise selection method is flawed in several ways [Harrell, 2015 and references therein]. 

For instance, it fails to account for multiple comparisons meaning that the selection outcome 

is almost always suboptimal to some extent. Nevertheless, when it comes to selecting 

interactions from a relatively large pool of effects, especially when the data set is relatively 

large, there are not many practical alternatives available. Therefore, we propose that the 

stepwise selection is used to select interaction terms, although this will be carefully applied to 

protect against some of the issues associated with the stepwise approach. 

Cross-validation / bootstrap validation. Validation is a group of resampling-based methods 

for prediction error estimation. Validation methods are not model selection methods on their 

own, but they can be used to assess how a given selection approach performs in terms of 

predictions on a new data set. It involves repeating a chosen selection procedure on each 

validation resample (fold) [Hastie et al., 2009]. The validation resample (or fold) allows 

multiple versions of the selection procedure, thereby allowing an assessment of how robust the 

procedure is. 

Among the most widely used validation methods are K-fold and bootstrap cross-validation. In 

the K-fold cross-validation the data are split into K non-overlapping parts of roughly equal size. 

For each part k = 1, …, K we run a selection procedure on the data that excludes the kth part 

and score the kth part with the selected model and then calculate the prediction error (usually 

based on some loss function). The process is repeated for all K folds and then the K estimates 

are combined to estimate the cross-validated prediction error. Figure 1 shows an illustration of 

five-fold cross validation. 

Figure 1 – Illustration of 5-fold cross validation. 

The bootstrap validation draws bootstrap resamples from the data, performs selection with a 

given approach and computes the prediction error on the original data. Because the data on 

which the model is selected and on which prediction error is computed are different, validation 

methods penalize non-parametrically for increased number of parameters thus preventing 

overfitting. 
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Given that the coverage estimation is to a degree a prediction problem where the model fitted 

on the Census coverage survey sampled areas is used to score the entire census data, estimating 

the prediction error is of interest. Furthermore, we are aiming to keep the variance low, which 

is related to preventing overfitting. Lastly, validation methods provide some protection when 

using stepwise selection, as we are intending to use it for interaction selection. 

As for choosing between the K-fold cross-validation and bootstrap validation, several points 

must be considered. First, the simple bootstrap as described above often does not provide a 

good estimate of the prediction error due to overlapping of the training and test data. Therefore, 

one or another modification of the approach, such as the “.632 estimator” [Hastie et al., 2009] 

may be required to obtain a good estimate. Second, the Census coverage survey has a stratified 

cluster sampling design. It means that resampling at the individual or household level does not 

reflect the way the coverage models are fitted and prediction is made. Whilst it is easy to 

replicate the sampling design within the bootstrap approach, it is non-trivial to implement the 

“.632 estimator” with the complex survey. On the other hand, it is only approximately possible 

to mimic the sampling design with the K-fold cross-validation, but the prediction error estimate 

is expected to be more accurate and the implementation easier. Therefore, we propose use of 

the K-fold cross-validation method to assess the prediction error for our model selection 

process. 

3. Overview of the selection process and model selection system 

In this chapter an overview of the proposed overall model selection process and the model 

selection system is provided. 

As discussed in Chapter 2, there is no single model selection approach that can be readily 

applied for the coverage modelling task. Whilst we want to be able to determine the best 

possible model, we have a limited timeframe and therefore we require a selection process which 

can quickly identify the most promising effects, and rejects models which may be unstable or 

do not have an explainable structure. This means there will have to be some carefully chosen 

criteria which effectively reduces the number of possible models which can be fitted and 

analysed to a manageable level. Hence, a careful combination of a number of approaches is 

used for model selection. The high level principles are: 

• We will always include key (and design) variables in the models, treating them as pre-

specified.  

• Standard descriptive (e.g. univariate, bivariate analysis) and diagnostic tests will be 

used as is good modelling practice. Numerical issues will be fully checked, and no 

models with issues will be accepted. 

• First order interactions will be analysed as per the purposeful model selection 

framework 

• K-fold cross validation and stepwise selection will be used to select second and third 

order interactions. No fourth order interactions will be considered. 

• Hierarchies within the model will be enforced – that is for A*B to enter, A and B must 

be present. 

• Prediction errors estimated from cross-validation will be used for decision making, 

rather than significance levels. The variance of the resulting coverage weights will also 

be used as a diagnostic. 
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• Multiple values of tuning and threshold parameters will be explored to provide a form 

of sensitivity analysis and ensure results are robust. 

 

A more detailed specification of what diagnostics and set-up processes that will be adopted is 

detailed at Annex A. The data required for the model selection procedure are detailed in Annex 

B. 

The proposed selection system consists of eight stages. It is semi-automated in the sense that 

parameters must be specified by a human, but once they are specified and the input data 

available, the system carries out the tasks associated with that stage. Each stage depends on the 

previous ones in the sense that each stage produces outputs for the succeeding stage. If input 

data are available for a given stage, it can be run without running the preceding or succeeding 

stages. It is possible to specify parameters for all stages and run all of them at once. 

The stages and their purpose are as follows: 

1) Data preparation: Selects the data for a specified model and does the filtering of 

observations (say, out of scope records). 

2) Initial data analysis: Performs the flexible renaming, recoding, collapsing (if needed) 

and transformation of the variables. Produces descriptive statistics, univariate, bivariate 

and trivariate analysis by fitting simple logistic models, collects and stores the fit 

information. 

3) Purposeful main effects selection: Automatically performs the purposeful main 

effects model selection under given parameter specification with the key variables 

forced into the model. 

4) Initial interaction analysis: Does one-by-one analysis of the main effect model with 

each single interaction (or hierarchy of interactions) added. Produces the corresponding 

likelihood ratio tests. Checks for the numerical issues like quasi-complete separation or 

singularity of the covariance matrix. Collects and stores information on issues and their 

nature. Uses different model fitting procedures (hplogistic and logistic) and options to 

check whether some of them overcome issues like singularity of the covariance matrix.  

5) Cross validation for second and third order interactions: K-fold cross-validation 

(using five folds) with specified parameters is run. This is the most technically involved 

part. The selection parameters that lead to a set of models with the smallest prediction 

errors for the logistic and the mixed effects logistic models are used to perform the 

selection on the full data. The models in this set will be assessed for the goodness of fit 

and model diagnostics will be performed. 

6) Goodness of fit and diagnostics: Goodness of fit checks and diagnostics for the models 

in the set of ‘best’ performing models. This can lead to some new selection branches to 

be built. 

7) Variance estimation: (Still under consideration) for the undercoverage models, use the 

model to produce undercoverage error corrected population size estimates and use the 

bootstrap approach to estimate their corresponding variance. 

8) Issue resolution. 

The selection system allows running and versioning multiple runs for each of the stages, so that 

different main effects models can be selected with varying selection parameters or different 

cross-validations run with different tuning parameters and / or forced in and out interactions. 
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Versioning is manual. The selection system permits a tree structure for the model selection 

process. Once the data for a particular type of model are ready (stage 1), the stage 2 processes 

allow producing multiple branches (or versions) of data based on the variable collapsing or 

transformations. Each of these branches will have the corresponding main effects model or 

models. Therefore, additional branches at stage 3 are created in the case of multiple main 

effects models. For a single main effects model any number of branches with selection of the 

interactions can be built. If any issues leading to model instability are detected along some 

branches, it is possible to start a new branch with issues rectified (usually at stage 2) to attempt 

to build a model not affected by the detected issue. In addition, stage 5 allows producing two 

related models (that is, allows two sub-branches): the logistic regression and mixed effects 

logistic regression. Each model produced by this branching is assessed using the estimated 

prediction error. 

In practice, the plan is to start selection parameter pre-specification and test runs of the selection 

system once some tuning data become available. During the main estimation processing 

window, two persons are expected to work per modelling exercise at a time. One is responsible 

for running the selection system stage by stage or in batches and for deciding the branching of 

the selection process. Alongside the semi-automated system as outlined above, there are 

standalone processes. These standalone processes are usually extracts of the main selection 

systems that perform a single task only. As the selection process moves through the stages, 

explores different parameterisations and collects diagnostics, all the problematic cases go to 

the revision pool. The second person is responsible for investigating the cases in the revision 

pool. Say, if a certain interaction is detected to cause a data separation issue, this interaction is 

sent to the revision pool. Appropriate standalone processes are then run to establish whether 

the issue can be meaningfully resolved by collapsing or not. If the issue can be resolved by 

collapsing, the collapsed version of the variables can start a new selection branch from the 

stage 2. There is no need to wait until the cases in the revision pool are resolved. Models with 

non-problematic effects can go through the system first. Once the cases in the revision pool are 

revised and fixed, more models are built. 



11 
 

 

Data 

Branch 1 

Data preparation 

Variable renaming, 

collapsing and 

transformation 

Data 

Branch 2 
Data 

Branch 3 

Purposeful main effect 

selection 
Revision 

pool 

Issues leading to 

model instability 

Run LR model Run MELR model 

Run selection process on full data 

using parameters from CV process 

  

Goodness of fit check 

Variance estimation 

 S
ta

rt
 o

f 
n

ew
 b

ra
n

ch
 w

it
h

 

is
su

e 
re

ct
if

ie
d

  

Issues leading to 

model instability 

Stage 2 

Stage 3 

Stage 4 

Stage 5 

Stage 6 

Stage 7 

Develop multiple branches of the 

potential interactions 

Selecting second and third order 
interaction using 5-fold CV with step 

wise selection 
  

Stage 8 

Stage 1 



12 
 

 

4. Goodness of fit / diagnostics 

Once the tuning parameters producing the smallest prediction error are determined (it is likely 

that there will be several combinations of such tuning parameters), the stepwise selection of 

the interaction terms is performed on the entire data. The goodness of fit of the resulting models 

is assessed and the corresponding regression diagnostic checks are performed. 

A goodness of fit measure is a single number that formally summarizes the agreement between 

the observed and fitted values. The purpose of diagnostic measures is to examine fit for across 

the covariate patterns (in our case also across the domains of interest). 

The cross-validation on the full data with a fixed model specification can be also used to assess 

goodness of fit, but it does not provide assessment based on the distribution of some test 

statistic. The goal is to use the range of goodness of fit tests. For the logistic regression model 

the standard tests suggested by Hosmer et al. [1997] and Hosmer et al. [2013] will be used 

(subject to resolution of performance issues): Pearson, deviance, Hosmer-Lemeshow, Osius-

Rojek, unweighted residual sum-of-squares and Stukel tests. All these tests except for the 

Stukel test assess the agreement between the observed and fitted values. The Stukel test 

assesses the validity of the assumption logit link assumption. For the mixed effects logistic 

model the smoothed residual based test [Sturdivant et al., 2007] is considered. 

There are several limitations related to the usage of these tests. First, for a model built on the 

data of small or moderate size, these tests can genuinely indicate whether there is the lack of 

fit. However, for a models built on a large data set, these tests almost always will indicate the 

lack of fit, unless some trivial phenomenon is modelled or the model selected overfits. This 

behaviour can be explained informally by the fact that in a large data set there almost certainly 

are some areas of poorer fit that result in the increase of a test statistic and subsequent rejection 

of the null hypothesis that there is no lack of fit. Second, some of the above test, notably the 

Hosmer-Lemeshow, have been targets of severe criticism with various alternatives proposed 

(like the unweighted residual sum-of-squares). Nevertheless, such features of the Hosmer-

Lemeshow test as grouping of the data based on the values of estimated probabilities is useful 

for a less formal assessment of goodness of fit. 

For the diagnostic checks of the logistic regression the standardized Pearson residuals, the 

change in the values of estimated coefficients and the Pearson chi-square statistic incurred by 

deletion of a covariate pattern is computed. The above statistics are plotted against the 

estimated probabilities for each of the covariate patterns. As in the case of assessment of 

goodness of fit, some of these diagnostic procedures may have limited value for large models. 

For the mixed effects models, the quantile-quantile plots are produced to assess the assumption 

of normally distributed random residuals. 

For both types of models, comparison of the observed and fitted probabilities for the domains 

of interests is useful since the models are built in attempt indirectly reflect the coverage in these 

domains. The difficulty with such comparison is that the correct sampling distribution of these 

(standardized) differences is difficult to obtain under the complex sampling design and 

dependence within the random blocks (like local authorities). However, even a rough 

approximation of the sampling distribution is more informative than some of the checks listed 

above. 
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5. Issue handling 

It is possible to encounter a situation where a selected model has good performance across the 

majority of the key domains of interest, yet the model diagnostics detects substantial 

discrepancies between the observed and fitted coverage probabilities for some of the domains. 

For instance, a small number of age-sex by local authority domains may exhibit such localized 

lack of fit. Another scenario is when an entire local authority has localized lack of fit which 

may be exacerbated by the local authority substantially influencing the estimates for the 

remaining domains. 

A proposed solution is to fit a local model into the data for the local authority where the problem 

was detected. Such model is likely to have broader categories for the key variables. Once the 

coverage probabilities of the local model are estimated, the composite estimator is applied to 

produce the weighted average of the main model and the local model probabilities. The 

composite estimator can simply average out the probabilities, but a more complex weighting 

strategy can be also used.  

If a local authority simultaneously has the localized lack of fit and substantially influences the 

rest of estimates, the process is as follows. The local authority is taken out from the data. The 

selection procedure is repeated without the local authority. A local model is used to estimate 

the coverage probabilities for the local authority. The fitted probabilities for the local authority 

are obtained using the main model. The composite estimator is used to combine the main model 

probabilities (the main model does not use the data for the problematic local authority) with 

the local model probabilities. 
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Annex A: selection principles 

▪ The main effect model is built using the purposeful selection, but the key and design 

variables will be included in the model (up to suitable collapsing if needed) irrespective 

of their significance or effect size. 

▪ There could be several main effects models with slightly different sets of covariates, 

differences in levels of categorical variables or differences in transformations of 

continuous variables.  

▪ Special attention is paid to the simple descriptive, univariate and bivariate analysis in 

order to prevent issues like complete or quasi-complete data separation. 

▪ All continuous variables are standardized to have zero mean (reason below).  

▪ Individual interactions are also analysed within the framework of the purposeful 

selection. 

▪ For a specified main effects model, the K-fold cross-validation with the stepwise model 

selection is used to perform the selection of interactions under varying tuning 

parameters. Significance levels at which an interaction enters the model and at which it 

stays in the model are the key tuning parameters. 

▪ For a specified main effects model with certain predefined interactions forced into the 

selection, the K-fold cross-validation with the stepwise model selection is used to 

perform the selection of interactions under varying tuning parameters.  

▪ For a specified main effects model with certain predefined interactions forced out of 

the selection, the K-fold cross-validation with the stepwise model selection is used to 

perform the selection of interactions under varying tuning parameters. 

▪ The loss function is some linear function of the log likelihood, usually -2 * 

log(likelihood).  

▪ All second order interactions except some that are meaningless in the coverage 

estimation context (to appear in Appendix) will be allowed in the selection. 

▪ A subset of all possible third order interactions will be allowed in the model selection 

(technically, it should be possible to consider all possible third level interactions, it is 

being investigated). 

▪ No interactions higher than the third order will be considered unless some exceptional 

https://uksa.statisticsauthority.gov.uk/wp-content/uploads/2020/07/EAP112-Over-coverage-estimation-strategy-for-the-2021-Census-of-England-and-Wales.docx
https://uksa.statisticsauthority.gov.uk/wp-content/uploads/2020/07/EAP128-Infomative-sampling-in-coverage-estimation-of-Census-2021.pdf
https://uksa.statisticsauthority.gov.uk/wp-content/uploads/2020/07/EAP128-Infomative-sampling-in-coverage-estimation-of-Census-2021.pdf


15 
 

cases. 

▪ All models have hierarchical main effects and interaction structure. That is, a higher 

order term is allowed only if all possible combinations of the lower terms are in the 

model (i.e., an interaction A*B can stay in the model only if the main effects A and B 

are in the model; an interaction A*B*C can stay in the model only if the interactions 

A*B, A*C, B*C and main effects A, B, C are in the model). 

▪ Decisions are based on prediction error rather than significance level wherever possible. 

▪ Checks for all sorts of real or potential numerical issues (quasi-complete data 

separation, singular covariance matrices, unrealistically large standard errors of the 

parameter estimates, unrealistically low / large parameter estimates, etc.) are part of the 

model selection process. During the cross-validation, application of these checks may 

result in removal of certain effects. 

▪ Since most selection decisions are made based on the function of the likelihood, any 

numerical problems may put the existence or uniqueness of the likelihood into question. 

Therefore, no model with numerical issues will be accepted.  

▪ For each selection, a logistic model is selected first, then the corresponding (i.e., the 

same main effects and interactions) mixed effects model is fitted. Based on the fit of 

the mixed effects model further removal of effects is considered both for the fixed 

effects only and fixed and mixed effects models. This is to account, if needed, for the 

inflated standard errors in the initial logistic model due to cluster sampling. 

▪ Selecting a best performing undercoverage model based on the estimated prediction 

error may not result in the optimal choice of model. Estimation of the prediction error 

accounts for variance and bias, however, the variance is for the fitted probabilities. 

Estimation is conducted with the weights that are reciprocals of these probabilities and 

the distribution of the weights is not the same as the distribution of the probabilities. 

Accounting for the variance of the coverage weights should also be taken in 

consideration. 

▪ Multiple values of tuning and threshold parameters are used. 

 

Annex B: the data required for the model selection 

The selection system requires the following input from the pre-processing: all the census 

coverage survey and census individuals in the general population within the census coverage 

survey sampled areas with all the relevant variables, geography information and each 

individual classified as being captured either in both sources, or in the survey only or in the 

census only. In addition, for each coverage survey individual, information on whether the link 

was made outside the postcode of the individual’s location in the coverage survey and 

geography information of where this link occurred. All the census coverage survey and census 

households in the general population within the census coverage survey sampled areas with all 

the relevant variables, geography information and the classification as above. All the census 

coverage survey and census individuals in the communal establishments within the census 

coverage survey sampled areas with all the relevant variables, geography information and the 

classification as above. In addition, the entire census data with all the variables coded in the 

way the variables of the coverage survey are coded. 
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Annex C: Stage by stage description of the model selection process and system 

Stage 1. Data for a specified model (e.g., undercoverage of individuals, overcoverage, 

undercoverage in communal establishments) are loaded. The parameter file accepts a piece of 

SAS code with specific filtering rules which gets parsed and executed in the selection system. 

Therefore, no hard-coded filtering rules are used. If requested, a process of geography 

reconciliation is carried out provided a geography lookup file for the Coverage survey is 

available. 

Stage 2. At this stage variables of the data filtered at Stage 2 are recoded, derived, transformed, 

or dropped. No hard coding is used. The parameter file accepts the rules for the mentioned 

manipulations. This stage also allows collapsing the levels of variables. 

Descriptive statistics such as frequency of each of the binary outcome for every level of the 

specified variables at the national or subnational levels are produced. Corresponding tables and 

plots are produced and stored. Essentially, this is where the purposeful selection of the main 

effects begins. 

Simple univariate, bivariate and trivariate models are fitted for a specified set of parameters 

and the corresponding fit outputs collected and stored. 

Stage 3. Using the coding of variables and based on the analyses performed at Stage 2, a 

multivariable main effects model is specified. It is possible to specify several models (creating 

different branches each having unique version code) which differ in the number of effects, or 

the level of collapsing, or the transformations applied. It is recommended to consider a branch 

with no or very little collapsing to begin with. The key variables are always included (but 

collapsing and transformations can vary). The fit summary is produced, stored and is sent for 

human scrutiny. Reduced models are fitted automatically by removing one or several covariates 

at a time. The parameter estimates of the initial fuller model are compared with the parameter 

estimates of smaller models for large shifts in values. Several thresholds can be considered 

(again, producing different branches).  

Based on the analyses performed in this stage, certain covariates may be moved into the 

revision pool. A person responsible for the revision pool runs procedures from stage 2 to 

explore possible issues or / and collapse some levels of the variables. 

Stage 4. At this stage second and third level interactions are assessed in the framework of the 

purposeful selection. For a certain main effect model selected at Stage 3, the main effects are 

kept fixed and each single interaction (or hierarchy of interactions in the case of third order 

interactions) is added. The corresponding likelihood ratio tests are conducted and results are 

stored. There are several checks for the numerical issues like quasi-complete separation or 

singularity of the covariance matrix. Information on issues and their nature is produced and 

stored. Two different model fitting procedures (hplogistic and logistic) are used to check 

whether some of the issues can be resolved using a different procedure. Whenever the proc 

logistic fails for a certain interaction and proc hplogistic does not fail for the same interaction, 

the starting values for the proc logistic are obtained based on the estimates produced by the 

high performance procedure and the proc logistic is run again. 

Interaction that result in issues are sent to the revision pool, but the process of model building 

continues with the effects available. Once an issue with a specific interaction is rectified at 
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stage 2, a new branch starts. 

Stage 5. Five-fold cross-validation is conducted with each fold being run in a parallel session. 

The decision to use the five-folds is a compromise between what is generally recommended as 

a reasonable choice [Hastie et al. and literature therein] and attempt to reflect the structure of 

the Coverage survey. The original structure of the sample is kept as much as possible. That is, 

output areas are drawn into each fold using the hard-to-count stratification. This can replicate 

the original sampling up to a point since the allocation is optimal for the hard-to-count index 

and proportional within each hard-to-count. However, in the original coverage survey sample 

each stratum (hard-to-count by local authority) is represented by at least two output areas. So 

in the fivefold cross-validation this structure cannot be preserved. 

Below is the description of a single run of the five-fold cross-validation for a specified set of 

tuning (thresholds for effects entering and staying in the model) and threshold parameters. 

Cross-validation is carried out for a range of such sets of parameters. Furthermore, the range 

of the tuning and threshold parameters will be refined based on the first successful results of 

the model selection runs. 

Before the actual stepwise selection is run, the training data are tested for quasi-complete 

separation and all the interactions that lead to separation are removed (and tracked). The 

following step is to run the stepwise selection for the first time to check for the interactions that 

result in cycling of effect addition and removal. All such effects are removed from the list of 

possible interactions. Such stepwise selection is performed until normal termination of the 

processes ics achieved and selected model specification is used for further checks. The next 

check is for large standard errors of the parameter estimates, first using the hplogistic procedure 

(high-performance logistic regression procedure that allows an additional level of 

multithreading and thus speeding up the process) then by rechecking with the logistic 

procedure. All interactions that have the standard errors larger than a specified threshold are 

removed. This is followed by checking for large parameter estimates. This is where the 

standardisation of continuous effects becomes useful. All interactions that have the parameter 

estimates larger than a specified threshold are removed. Then the stepwise selection is 

performed again (once all or most of the potential numerical issues have been removed). The 

selected model is fitted to the training data by two different procedures (hplogistic and logistic) 

and two sets of parameter estimates are used to score the test data and compute the loss 

function. Two values of the loss function are compared and if the difference is larger than a 

certain prespecified threshold the model is rejected. 

If the logistic model is not rejected, then the mixed effects logistic model is fitted to the training 

data. Parameter estimates and their standard errors are checked, to see that they do not exceed 

some desired values. Since the stepwise selection is done for the logistic model fitted to the 

clustered survey data, the standard errors tend to be underestimated. Once the mixed effects 

model is fitted, some of the interactions can be removed based on the global test for 

significance, thus leading to the second set of pre-selected effects. Note that, in order to better 

account for clustered sampling, one would need to fit a mixed effects model with random output 

area and postcode. This is likely to be computationally infeasible and so is not being 

considered. 

When estimating the parameters of the mixed effects model the maximum likelihood approach 

using the Laplace approximation method is used. The Laplace approximation allows 
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computation of the marginal likelihood that is comparable with the likelihood obtained from 

the logistic regression. There is also the conditional likelihood in the mixed effects model. Test 

data are scored using the fitted mixed effects model. Unlike in the case of the logistic 

regression, there is no inbuilt implementation of computation of the value of the loss functions 

in the case of mixed effects models. Therefore, they should be computed from first principles. 

The conditional log likelihood is straightforward to compute using the outputs of the glimmix 

procedure: 

𝑙𝑜𝑔L (𝑝̂ | 𝑢̂)= log (∏ 𝑝̂(i in census | 𝑢̂𝑙,𝑖 ∈ 𝑙)
𝑦𝑖

(1 − 𝑝̂(i in census | 𝑢̂𝑙,𝑖 ∈ 𝑙))
1 − 𝑦𝑖𝑁

𝑖 = 1 ), 

where i is used to index individuals (or households), l is used to index the subject of model’s 

random component, 𝑢̂𝑙,𝑖 ∈ 𝑙 is the estimate of the random residual and i belonging to l means 

that an observation i is nested in an area l, yi is the value of the outcome variable, N is the 

number of observations in the data that are scored.  

The marginal likelihood is more useful for the selection as it allows comparison of the logistic 

and mixed effects logistic regression-based estimates of the prediction error. However, it is 

more difficult to compute on the test data. The marginal log likelihood is given by 

𝑙𝑜𝑔L (𝑝̂)  

=  𝑙𝑜𝑔 ∏ (∫ ∏ [
𝑒𝑥𝑝(𝒙𝒍𝒊

𝑻 𝜷̂  + 𝑢𝑙)

1 +  𝑒𝑥𝑝(𝒙𝒍𝒊
𝑻 𝜷̂  + 𝑢𝑙)

]

𝑦𝑙𝑖

𝑖

[
1

1 +  𝑒𝑥𝑝(𝒙𝒍𝒊
𝑻 𝜷̂ +  𝑢𝑙)

]

1 − 𝑦𝑙𝑖

𝑓(𝑢𝑙;  0, 𝜎̂2 )𝑑𝑢𝑙

∞

−∞

)

𝑙

, 

where yli is the value of the outcome variable for an observation i in an area l, 𝜎̂2 is the estimated 

variance of random effect and 𝑓(𝑢𝑙;  0, 𝜎̂2 ) is the normal probability density function of the 

random intercept. 

The above expression is approximated by running a numerical integration where M values of 

𝑢𝑙
(𝑚)

 are generated from the 𝑓(𝑢𝑙;  0, 𝜎̂2 ): 

𝑙𝑜𝑔L (𝑝̂)

≈  𝑙𝑜𝑔 ∏ (
1

𝑀
∑ ∏ [

𝑒𝑥𝑝(𝒙𝒍𝒊
𝑻 𝜷̂  + 𝑢𝑙

(𝑚)
)

1 +  𝑒𝑥𝑝(𝒙𝒍𝒊
𝑻 𝜷̂  + 𝑢𝑙

(𝑚)
)

]

𝑦𝑙𝑖

𝑖

[
1

1 +  𝑒𝑥𝑝(𝒙𝒍𝒊
𝑻 𝜷̂  + 𝑢𝑙

(𝑚)
)

]

1 − 𝑦𝑙𝑖𝑀

𝑚 = 1

) .

𝑙

 

When M is around 3000 this approximation is very close to the analytical value. 

Once processing of each of the folds is completed, the prediction errors of the logistic and 

mixed effects models are estimated. 

Those parameters and interactions forced into or out of the model that result in the smallest 

prediction errors are declared to be parameters for the selection of the preliminary final models 

and set to be run on the entire modelling data. 

All procedures that can run on multiple CPUs are run on multiple CPUs within each fold-

dedicated parallel session. 

 

 


