






Design and Implementation of the Dynamic

Population Model: Version 2.0

DPM Project Team

February 10, 2023



Abstract

This paper is a technical description of the Dynamic Population Model (DPM),
a new approach to population estimation being developed at the Office for Na-
tional Statistics. The core of the DPM is a demographic account, a set of
disaggregated, internally-consistent estimates of population, births, deaths, and
migration. The information sources used to build the demographic account in-
clude multiple imperfect quantitative datasets, and qualitative information on
features such as data reliability, which are combined and synthesised within a
formal statistical framework.

The principal challenge in building the DPM has been developing methods
which are fast enough to produce estimates, by age and sex, for 331 Local
Authorities. The DPM breaks the estimation process down into multiple parts,
and uses a novel method for the most computationally-demanding part, which is
the estimation of values within each Local Authority. This paper describes the
work we have done to date, and outlines possible extensions. The paper will be
continually revised as the methods and supporting software develop. Comments
and suggestions are welcome.
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Chapter 1

Introduction

The Dynamic Population Model (DPM) project team at the Office for Na-
tional Statistics (ONS) is developing a new set of methods and software for
demographic estimation and forecasting. The aim is to produce estimates and
forecasts that are more timely, detailed, flexible, and transparent than is possi-
ble with existing ONS methods. These improvements all depend on the use of
formal statistical modelling. Expert judgment and qualitative information will
play a role, but will take the form of explicit modelling assumptions.

This paper describes the state of the model in early 2023. The model is
still under active development. However, initial results from the model will help
inform the National Statistician’s 2023 recommendations to government on the
future of population and social statistics [Benton, 2021].

Once it is sufficiently mature, the DPM will be used to produce official
statistics as part of routine production processes. A system that is to be used
in a production process for official statistics must be reliable and maintainable.
It also needs to be fast, and able to accommodate changes to input data or to
the specification of outputs.

There are no existing systems for population estimation that meet all the re-
quirements of the DPM. The difficulty of scaling up existing statistical methods
for population estimation was, for instance, a recurring theme in discussions at
the United Nations expert group meeting on population estimation and fore-
casting in 2020 [United Nations Population Division, 2020]. In the absence of an
existing comprehensive solution, the DPM project has adopted a framework that
meets its non-computational requirements, and changed the way the framework
is implemented so that it meets the computational requirements as well.

The framework that the DPM has adopted is Bayesian demographic accounts
[Bryant and Graham, 2013, Bryant and Zhang, 2018]. Bayesian demographic
accounts yield internally-consistent demographic estimates from multiple noisy
datasets, in a transparent and reproducible way.

The existing software for estimating Bayesian demographic accounts, the R
package demest [Bryant et al., 2021], takes approximately 30 hours to produce
annual estimates, by age and sex, for England and Wales over the period 2011–
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2021. This is far too slow to be scaled up to 331 Local Authority estimates, or
even to do thorough testing of the England and Wales model.

The DPM’s new approach to estimating Bayesian demographic accounts has
two distinctive features aimed at maximising speed, simplicity, and reliability:

Sequential estimation. Rather than estimating all unknown quantities simul-
taneously, the DPM breaks the estimation into discrete steps, carried out
sequentially.

Cohort state space estimation. We implement a novel approach to estimat-
ing demographic accounts where we apply state space methods to cohorts
within accounts.

This paper sets out our strategy for estimating Bayesian demographic ac-
counts. It provides an overview of the system as a whole, gives details of the
current implementation of the system, and outlines further work that will be
required to make it ready for the production of official statistics.
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Chapter 2

Framework

2.1 Bayesian demographic accounts

A demographic account is a systematic tabulation of demographic stocks and
flows over time, disaggregated by dimensions such as age, sex, and geography.
It is the demographic equivalent of national accounts, and in fact shares a com-
mon intellectual origin with them [Rees, 1979, Stone, 1984, Willekens, 2011].
As with a national account, the detail, standardisation, and consistency of a
demographic account mean that it can be used in many ways.

The stocks and flows in a demographic account conform to the accounting
identity that change in stock over a period equals inflows during that period
minus outflows. Inflows include births and in-migration, and outflows include
deaths and out-migration. The accounting identity applies to the account as a
whole, and also to sub-populations, such as the population of a particular area.

θt1 θt2 θt3

yt1 yt2 yt3

· · ·

· · ·

Figure 2.1: Structure of a state space model. The yt are data and the θt are latent
quantities that must be inferred. Arrows represent probabilistic relationships.

Bayesian demographic accounts are an example of a Bayesian state space
model. Bayesian state space models have become popular, in recent years,
among demographers, ecologists, and epidemiologists working on challenging
problems in demographic inference [e.g. King et al., 2009, Wheldon et al., 2013,
Raymer et al., 2013, Newman et al., 2014, Alkema et al., 2016, Flaxman et al.,
2020, Auger-Méthé et al., 2021]. A generic state space framework is depicted
in Figure 2.1. Data yt are assumed to be generated by unobserved processes
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described by vector θt. The θt are assumed to give a sufficiently complete de-
scription of the system that (i) data yt are independent conditional on the θt,
and (ii) θt−1 is no help in predicting θt+1 if we already know θt. The prob-
lem of estimating unknown quantities within a state space model is well suited
to Bayesian statistical methods, which are extremely flexible, and can accom-
modate large systems with many unobserved components. The main feature
distinguishing Bayesian demographic accounts from other Bayesian state space
applications is their size, in that a model such as the DPM requires unusually
large amounts of input data and produces unusually detailed outputs [Bryant
and Zhang, 2018].

Figure 2.2 shows the contents of a Bayesian demographic account. In con-
trast to Figure 2.1, which disaggregates by time period, Figure 2.2 disaggregates
by component.

The circles marked ‘hyper-parameters’ and ‘rates’ at the top of Figure 2.2 to-
gether form system models for the births, deaths, and migration. These system
models describe demographic regularities, such as the tendency for mortality
rates to fall and then rise with age. The circles marked ‘model’ at the bottom
of Figure 2.2 are data models. Each data model depicts the assumed relationship
between the (unknown) true counts and the (known) reported counts.

The datasets in Figure 2.2, represented by squares, correspond to the y in
Figure 2.1. For simplicity, the diagram shows each demographic series as having
a single dataset. In practice, however, a series can have any number of datasets,
including zero.

The system models approximate what a skilled analyst would know about
plausible values for demographic parameters, while the data models approxi-
mate what a skilled analyst would know about the quality of the data sources.
Specifying and fitting a Bayesian demographic account is a more formal and sta-
tistical way of doing the production tasks of assessing data sources, adjudicat-
ing among inconsistent values, smoothing through random variation, reconciling
stocks and flows, and checking for demographic plausibility.

The output from a Bayesian demographic account is a comprehensive and
internally-consistent set of counts and rates. This consistency takes a strong
form. Population, births, deaths, and migration satisfy the demographic ac-
counting identities. Birth rates, death rates, and migration rates are all inte-
grated with the counts. Uncertainties about death rates, or about the popu-
lation at risk of dying, for instance, are reflected in uncertainties about death
rates.

Bayesian demographic accounts can be estimated using the open source R
package demest [R Core Team, 2020, Bryant et al., 2021]. This package uses
Markov chain Monte Carlo methods, customised for demographic accounts.
However, despite the computationally-intensive code being translated into C
and optimised for speed, the calculations are still prohibitively slow. In addi-
tion, the code dealing with demographic accounts is complex and difficult to
maintain.
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Population Births Deaths Migration

Rates Rates Rates

Hyper-
parameters

Hyper-
parameters

Hyper-
parameters

Data Data Data Data

Model Model Model Model

Figure 2.2: Structure of a Bayesian demographic account. Squares represent quan-
tities that are treated as known (corresponding to y in Figure 2.1); circles represent
quantities that are treated as unknown (corresponding to θ in Figure 2.1); arrows
represent probabilistic relationships; and the dashed line marks the boundaries of the
demographic account. Although each demographic series is depicted in the figure as
having exactly one dataset and one associated data model, each series can in fact have
zero, one, or more datasets, with the corresponding number of data models. Similarly,
the “Migration” series can consist of multiple series, each with its own datasets and
data models. The arrows from population to births, deaths, and migration reflect the
fact that models for births, deaths, and migration include exposure terms.
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2.2 Computational strategy

The DPM project team is completely redesigning and rebuilding the methods
and software for estimating Bayesian demographic accounts, prioritising sim-
plicity and speed. In Section 2.2, we introduce the two main features of the new
approach that support these objectives. Subsequent sections and the Appendix
fill in the details.

2.2.1 Sequential calculations

Update combined
account for

all areas, given
system models,

data models, data

Update system
models, given

combined account,
data models, data

Update data
models, given
combined ac-
count, system
models, data

(a) Classic Bayesian approach

Approximate separate
components of account

Estimate parameters for
system and data models

Estimate accounts and rates,
independently for each area

Build combined account from area
estimates, including derivation of
origin-destination migration flows

(b) DPM sequential approach

Figure 2.3: Contrasting strategies for estimating Bayesian demographic accounts. The
classic Bayesian computational strategy is to cycle through components of the model,
updating each component conditional on the remaining components until convergence
is reached. The DPM strategy is to carry out each stage only once. This strategy
requires some use of approximations.

The DPM has achieved major gains in speed, scalability, and simplicity by
avoiding the classic Bayesian iterative approach to computation, and instead
taking a more sequential approach. Figure 2.3 summarises the differences. Sec-
tions 5.1.2 and 5.1.3 describe our plans to address the potential loss of accuracy
that may arise in the sequential approach from not accounting for dependencies
between areas.

The methods implemented by R package demest, for other methods for
Bayesian population estimation [Wheldon et al., 2013, Alexander and Alkema,
2022], are based on Markov chain Monte Carlo (MCMC). A large model con-
taining all the unknown quantities is set up, and estimation consists of cycling
through the model, updating each component conditional on all the others, until
the process converges. This approach is very powerful, and produces compre-
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hensive, internally-consistent estimates for all the unknowns. The disadvantage
is that the wait for convergence can be long.

Convergence is particularly slow when the unknown quantities within the
model are strongly correlated with each other. The unknown quantities within
a demographic account, like those of many demographic models [Yackulic et al.,
2020], often are strongly correlated with each other. Estimates of birth, death,
and migration rates, for instance, are strongly correlated with estimates of birth,
death, and migration counts. The result is that, even with careful specification
of models, convergence can require infeasibly long computation times.

A second practical disadvantage of large MCMC-based models is that they
can be difficult to understand and maintain. When every part of the system
can affect every other part, tracing the origins of a possible error is challenging.
The result is reduced transparency, increased cost, and increased risk.

The DPM avoids extensive MCMC-style iteration. An account disaggregated
by age, sex, and Local Authority is constructed in four steps:

1. Approximate components. Build approximations of the series for births,
deaths, migration, and population. Unlike in the final account, these series
do not have to be mutually consistent.

2. Fit system and data models. Use the approximate series to fit models
for births, deaths, and migration. The models all contain hyper-parameters,
which are kept, and rates, which are discarded. Similar calculations, based
on the approximate series for births, deaths, migration, and population,
are also done for data models.

3. Estimate individual accounts and rates Using the hyper-parameters and
the raw data, (re-)estimate demographic accounts and rates. Each Local
Authority is estimated independently (conditional on the hyper-parameters
and data).

4. Combine accounts, derive migration Combine the individual accounts
into a unified account for all of England and Wales. As part of this pro-
cess, derive values for all migration flows between Local Authorities, and
between all Local Authorities and the outside world.

The DPM sequential strategy relies on having relatively good data on which
to base the initial estimates in Step 1, and on designing steps 2–4 so that they
still work even when the initial estimates do have errors.

2.2.2 Cohort state space estimation

Of the steps described above, the most challenging is Step 3, the estimation of
counts and rates for each Local Authority. The DPM team has developed a
novel approach to Step 3, which is summarised in Figure 2.4.

The new approach exploits the fact that, under certain conditions, the pos-
terior distribution for the account as a whole can be expressed as the product
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Figure 2.4: The cohort state space approach to estimating a demographic account.

of posterior distributions for each cohort within the account. A sufficient set of
conditions for cohort independence is that

• hyper-parameters in the system and data models are fixed;

• birth counts are fixed; and

• data are disaggregated by age, sex, cohort, and time.

Expressing the posterior distribution for the whole account as the product
of cohort-level posterior distributions allows us to build up the posterior distri-
bution for the whole account one cohort at a time. Estimating rates and counts
for a single cohort is much easier than estimating rates and counts for the whole
account. Each cohort has the generic state space format depicted in Figure 2.1,
but with only a few dimensions. This simple, low-dimensional structure per-
mits the use of specialised estimation methods that are many times faster than
Markov chain Monte Carlo (MCMC).

Section 3.3.1 describes how cohort rates and counts can be estimated using
particle filters [Doucet et al., 2009, Kantas et al., 2015, van de Schoot et al.,
2021], which is the method we have been using in our work so far. Section 3.3.2
describes a possible alternative, using R package TMB [Kristensen et al., 2016],
which may be even faster.

2.3 Demographic account

This section provides a detailed description of a demographic account, including
notation. We describe an account for a single area. As described in Chapter 3,
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we assemble an account for all of England and Wales by combining individual
accounts for each Local Authority.

An account for a single area contains five generic series: population, births,
deaths, in-migration, and out-migration. In-migration is defined as movement
into the geographical unit, and out-migration is defined as movement out.

Counts within a demographic series are classified along four dimensions: age,
sex, time, and cohort. The dimensions are defined as follows.

age Age is measured in completed years, and takes values 0, 1, · · · , A, where A
is the maximum age that we are considering in the account. Age group A
is not open ended, as this would entail mixing together cohorts.

sex The account includes a dimension called sex. One of the sexes is chosen
to be used as the denominator when calculating fertility rates (we have
chosen female, following the practice in other ONS outputs).

cohort “Cohort” means “birth cohort”, that is, a group of people all born
during the same year.

time We specify points one year apart, and use these to divide time into one-
year periods. We refer to periods by the time point at the end, so that
the interval between time points t− 1 and t is called period t.

We use qpopasct to denote the count of people in age group a, sex s, and co-
hort c at time point t. Quantities describing births, deaths, in-migration and
out-migration are defined similarly, and are summarised in the upper panel of
Table 2.1. The table also includes a quantity qaccasct, called accession [Preston and
Coale, 1982; Moultrie et al., 2013, p. 258]. Accession is the number of people
ascending from age a to age a+1 during a period t, such as the number of people
attaining age 65 during the year 2020. It is useful in demographic accounting,
where it functions as a type of stock measure.

When working with demographic accounting identities, or when estimating
counts and rates within cohorts, we have found it helpful to have a second
system of notation for describing counts and rates. We refer to this notation as
‘cohort-oriented’ notation, as opposed to the standard ‘age-oriented’ notation.

Figure 2.5 illustrates age-oriented and cohort-oriented notation for stocks.
The estimation period starts at time t0. The shaded area depicts a cohort. The
left panel shows stock measures for this cohort using age-oriented notation, and
the right panel shows stock measures using cohort-oriented notation. The index
k starts at 0 with the initial population, and then increments by 1 with each
successive value for population or accession. Cohort-oriented notation uses the
same superscript (stk) to denote population and accession.

If a cohort is born during the estimation period, rather than before it, then
the initial stock is the number of births occurring during the year, summed over
the age and cohort of parents,

xstk0,s,t =
∑

a

∑

c

qbthasct. (2.1)
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Table 2.1: Notation for demographic accounts

Quantity Definition

Age-oriented notation

qpopasct Count of people belonging to age group a, sex s, and cohort
c at time point t

qaccasct Count of people in sex s and cohort c attaining age a + 1
during period t (accession)

qbthasct Count of births of sex s to members of the sex chosen for
calculating the exposure term in fertility rates in age group
a and cohort c during period t.

qdthasct Count of deaths of people in age group a, sex s, and cohort
c during period t.

qinasct Count of in-migrations by people in age group a, sex s, and
cohort c during period t.

qoutasct Count of out-migrations by people in age group a, sex s,
and cohort c during period t.

Cohort-oriented notation

xstkksc, k = 0, c ≤ t0 Count of population in sex s and cohort c at time point t0.

xstkksc, k = 0, c > t0 Count of births of sex s during period c.

xstkksc, k > 0 Count of population or accession for people in sex s and
cohort c at the right or upper boundary of Lexis triangle k.

xbthksc Count of births of sex s to people in Lexis triangle k and
cohort c.

xdthksc Count of deaths of people in Lexis triangle k, sex s, and
cohort c.

xinksc Count of in-migrations by people in Lexis triangle k, sex s,
and cohort c.

xoutksc Count of out-migrations by people in Lexis triangle k, sex
s, and cohort c.

Period t is the interval between time points t − 1 and t. Estimation starts at
point t0, implying that the first period for which flows are estimated is period
t0 + 1.
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a

a + 1

a + 2

t0 t0 + 1 t0 + 2

qa, c, t0

pop

qa, c, t0+1
acc

qa+1, c, t0+1
pop

qa+1, c, t0+2
pop

time

age

(a) Age-oriented

a

a + 1

a + 2

t0 t0 + 1 t0 + 2

x0, c
stk

x1, c
stk

x2, c
stk

x3, c
stk

time

age

(b) Cohort-oriented

Figure 2.5: Age-oriented versus cohort-oriented notation for stocks in a cohort born
before the start of the estimation period. Sex subscripts s have been omitted.

If we define births as accession to age 0, then for a cohort born during the
estimation period, stock at k = 0 is accession, stock at k = 1 is population,
stock at k = 2 is accession, and so on.

a

a + 1

a + 2

t0 t0 + 1 t0 + 2

qa, c, t0+1
dth

qa+1, c, t0+1
dth

qa+1, c, t0+2
dth

time

age

(a) Age-oriented

a

a + 1

a + 2

t0 t0 + 1 t0 + 2

x1, c
dth

x2, c
dth

x3, c
dth

time

age

(b) Cohort-oriented

Figure 2.6: Age-oriented versus cohort-oriented notation for deaths in a cohort born
before the start of the estimation period. Sex subscripts s have been omitted.

Figure 2.6 illustrates notation for flows, using the example of deaths. Flows
are classified according to the ‘Lexis triangle’ that they belong to. Lexis triangles
are defined in diagrams such as Figure 2.6 by the vertical lines marking out time,
the horizontal lines marking out age, and the diagonal lines marking out cohort.
The cohort in Figure 2.6a, for instance, traverses three Lexis triangles, from the
bottom left to the top right. The first triangle is an “Upper” Lexis triangle, the
second is a “Lower” Lexis triangle, and the third is an “Upper” Lexis triangle.
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The notation for flows starts with k = 1, and then increments with each Lexis
triangle.

Using cohort-oriented notation, the basic accounting identity for the demo-
graphic account in the base model can be stated very simply:

xstkksc = xstkk−1,s,c − xdthksc + xinksc − xoutksc. (2.2)

2.4 System models

We model deaths using

qdthasct | γdthasct, easct
ind∼ pois(γdthascteasct), (2.3)

which states that, conditional on mortality rate γdthasct and exposure easct, deaths
qdthasct are drawn independently from a Poisson distribution with mean γdthascteasct.

Exposure easct is calculated using

easct =

{
(qacca−1,s,c,t + qpopa,s,c,t+1)/4 if a, c, t refer to a lower Lexis triangle

(qpopa,s,c,t−1 + qaccasct)/4 if a, c, t refer to an upper Lexis triangle,

(2.4)
or, in cohort-oriented notation,

eksc = (xstkk−1,s,c + xstkksc)/4. (2.5)

The expressions for exposure are derived by multiplying the average number of
people in a Lexis triangle by the average number of years that a person spends
in a triangle, which is 1

2 .
The model for out-migration has an identical structure to the model for

deaths,

qoutasct | γoutasct, easct
ind∼ pois(γoutascteasct). (2.6)

Let sE denote the sex chosen for calculating exposure. Our model for fertility
is

qbthasct | γbthasct, ea,sE,c,t
ind∼ pois(γbthasctea,sE,c,t), (2.7)

where the a, c, and sE subscripts describe the parent, and the s subscript
describes the child.

Finally, the model for in-migration is

qinasct | γinasct
ind∼ pois(γinasct). (2.8)

Unlike the models for deaths, out-migration, and births, the model for in-
migration does not include an exposure term. The reason for omitting the
exposure term is that in-migration originates from outside the system and does
not have a well-defined population at risk.

In these models the assumption that counts conditional on the rates and
exposure follow a Poisson is not as restrictive as it might first appear. This is
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because the partly hierarchical models that we use for estimating expected rates
allow for over-dispersion. Section 5.1.3 outlines our plans for investigating the
further developments of these hierarchical models.

Birth, death, and migration rates γbthasct, γ
dth
asct, γ

in
asct, and γoutasct are in turn

modelled, with these higher-level models having their own hyper-parameters.
The specifications that we have used in our modelling to date are described in
Chapter 4.

2.5 Data models

The DPM project team is developing a suite of data models, ranging from
simple to complex, including models that are general-purpose and models that
are customised to particular datasets. Here we illustrate the design of data
models using a simple example. Details on the implementation of the model are
given in Section 4, and plans for extensions are described in Section 5.2.1.

Our simple model employs a normal distribution with means and variances

that are treated as known. We assume that y
(d)
asct, the reported population value

from population dataset d, follows a normal distribution centered on the true

population value, qpopasct, multiplied by net coverage ratio ρ
(d)
asct. When we allow

for the fact that qpopasct, unlike the normal distribution, is discrete, we obtain

p
(
y
(d)
asct

)
= Φ

(
y
(d)
asct + 0.5 | ρ(d)asctqpopasct, (σ

(d)
asct)

2
)

− Φ
(
y
(d)
asct − 0.5 | ρ(d)asctqpopasct, (σ

(d)
asct)

2
)
,

(2.9)

where Φ denotes the cumulative distribution function for the normal distribu-
tion.

Values for ρ
(d)
asct and σ

(d)
asct are supplied by the user and are treated as fixed.

Information on values for ρ
(d)
asct and σ

(d)
asct can come, for instance, from coverage

surveys, metadata, or previous studies of data quality. A value of 0.9 for ρ
(d)
asct,

for instance, implies that any over-coverage is outweighed by under-coverage so

that the reported value y
(d)
asct is expected to understate the true value qpopasct by

10%.
Under our normal-distribution data model, the y

(d)
asct are independent, con-

ditional on the model parameters. Conditional independence is something we
build into all our data models.

2.6 Back series, extending series, and forecast-
ing

The DPM needs to provide three types of estimates:

Back series Historical back series, such as accounts and associated rates for
the period 2011–2022.
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Extending series Adding new values to an existing series, such as adding
values for 2023 to an existing series for 2011–2022.

Forecasting Producing values for future years, such as doing a forecast for the
period 2024–2028 in the year 2023.

The distinction between extending series and forecasting can become blurred,
since values for existing series sometimes have to be produced before all the
main data sources have yielded numbers of the period in question.

The question of how long to wait before producing estimates can be difficult.
Some data users require the most up-to-date values possible, but the longer the
reporting lag, the more input data becomes available, and the more accurate
the estimates can be. National Accounts face this same trade-off, which they
resolve by producing provisional and final estimates. The same solution may
make sense for demographic accounts. The DPM team is currently discussing
options with our stakeholders.
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Chapter 3

Computation

Dependencies between rates and counts creates an awkward circularity in the
estimation of demographic systems. To infer birth, death, and migration rates,
we need counts of births, deaths, migration, and population. But to estimate
counts of births, deaths, migration, and population, we would like to make use
of regularities in birth, death, and migration rates. MCMC-based methods deal
with the circularity by updating counts conditional on rates, and then updating
rates conditional on counts, repeating the process thousands of times.

In the DPM, we make do with only two conditional updates. In Step 1, we
construct a high-quality approximation to the true account; in Step 2, we use
this approximation to estimate system and data models (the first conditional up-
date); and in Step 3 we use system and data models to estimate Local Authority
accounts and rates (the second conditional update). The Local Authority ac-
counts are combined into an England and Wales account, and origin-destination
migration flows are derived, in Step 4.

3.1 Step 1: Initial approximation of components
of account

We start by constructing an initial approximation of the birth, death, migra-
tion, and population series that make up Local Authority accounts. The likely
accuray of this approximation varies by demographic series. Births and deaths
data are extremely high quality, as is population data in census years. Popula-
tion data in non-census years, data on migration flows within the England and
Wales, and data on migration between England and Wales and Scotland and
Northern Ireland are somewhat less reliable, but still good. Data on interna-
tional migration are currently the least reliable. Chapter 4 provides more detail
on the specific data sources that we have been using, and on the processes we
follow to clean the data.

When we approximate the components of the demographic account, we do
not require that the components satisfy the demographic accounting identities.
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Satisfaction of the identities is not required for the next step in the process, the
estimation of system and data models.

3.2 Step 2: Estimation of system and data mod-
els

As shown in Figure 2.2, the system models for births, deaths, and migration
are all hierarchical, with parameters for rates governed in turn by sets of hyper-
parameters. The hyper-parameters capture patterns in the rates. A model for
births, for instance, might contain a rate parameter for every combination of
age, sex, cohort, area, and time, but also a smaller number of hyper-parameters
that capture overall levels in each Local Authority, or age-profiles for all England
and Wales.

Inclusion of hyper-parameters can enable system models to pool strength
across ages, sexes, areas, and times, leading to more stable estimates. Hyper-
parameters also provide a way of modelling shared trends across all of England
and Wales, such as the long-term downward drift in mortality rates, interrupted
by the COVID pandemic. As described in Chapter 4, in our work to date, we
have not fully exploited the potential benefits of hyper-parameters, but this is
something we will pursue in future.

Estimates for rate parameters reflect local variation, while estimates for
hyper-parameters reflect broader trends. Although estimates for hyper-parameters,
like those for rate parameters, are vulnerable to systematic errors in the input
data, they are at least partly protected against idiosyncratic errors affecting
small numbers of cells. Our estimation strategy reflects these differences, in
that we retain the hyper-parameters that we estimates in Step 2, but discard
the rates parameters. The aim of Step 2 is to capture the main features of
fertility, mortality, and migration rates, and not the fine details.

As we discuss in Section 2.5 and Chapter 4, none of the data models that we
are currently using have the same rates versus hyper-parameters structure as the
system models. In fact, in our work to date, we have, for simplicity, used data
models in which all parameters are estimated from the initial approximation of
the account. This is likely to change, however, as the DPM develops. It is likely
that in future we will estimate the parameters of at least some data models, like
the parameters of system models, in two stages.

3.3 Step 3: Estimation of demographic counts
and rates

Step 3, the estimation of the demographic account for each Local Authority,
and the associated birth, death, and migration rates, is the most challenging of
the four steps. We describe two alternative estimation methods, the first based
on particle filters and the second based on Laplace’s Method, as implemented
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R package TMB. We have used the first method to produce full scale accounts,
and are still experimenting with the second method.

3.3.1 Estimation via particle filters

We describe the particle filters that we have been using for estimating a back
series, and then describe the slightly different particle filters that we use for
adding values to existing series. The particle filters are applied separately to
every combination of sex s and cohort c. To reduce clutter, we omit references to
s and c. We suppress dependence on hyper-parameters and data model param-
eters, which we are treating as fixed. In the models that we have implemented
to date, we have also treated births and deaths, which are measured extremely
accurately in the UK, as known and fixed.

Let

x0 = xstk0 (3.1)

xk = (xstkk , xbthk , xdthk , xink , x
out
k ), k = 1, · · · ,K (3.2)

γk = (γbthk , γdthk , γink , γ
out
k ), k = 1, · · · ,K. (3.3)

(3.4)

Similarly, let

yk = {y(d)k }d=1,··· ,D, k = 0, · · · ,K, (3.5)

with the understanding that, for any given k, some or all values for y
(d)
k may be

missing. For any variable u, we use ut1:t2 as shorthand for ut1 , · · · , ut2 .
The structure of system models (2.3), (2.6), (2.7), and (2.8), and expressions

for exposure (2.4) and (2.5) imply that, conditional on demographic rates,

p(xk,γk | x0:k−1,γ1:k−1) = p(xk,γk | xk−1). (3.6)

In addition, the structure of data models such as (2.9) implies that

p(yk | y0:k−1,x0:K) = p(yk | xk). (3.7)

We will make sure that any data models we introduce in future will also satisfy
(3.7).

Deriving a back series for an individual cohort entails sampling from

p(x0:K ,γ1:K | y0:K) ∝ p(x0:K ,γ1:K)p(y0:K | x0:K), (3.8)

which can be decomposed into

p(x0)p(y0 | x0:K)
K∏

k=1

p(xk,γk|x0:k−1γ1:k−1)p(yk | y0:k−1,x0:K). (3.9)

Equations (3.6) and (3.7) allow us to simplify (3.9) to

p(x0)p(y0 | x0)

K∏

k=1

p(xk,γk | xk−1)p(yk | xk). (3.10)
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Our algorithm for drawing from (3.10) is set out in Figure 3.1. Following
standard terminology for particle filters, Figure 3.1 refers to f(xk,γk | xk−1) =
p(xk,γk | xk−1) from (3.10) as the transition function, and g(yk | xk) = p(yk |
xk) as the likelihood. It also refers to importance function q(xk,γk | yk,xk−1),
which is an approximation of our (unnormalised) target distribution, f(xk,γk |
xk−1)g(yk | xk). The importance function is designed so that, in contrast to
f(xk,γk | xk−1)g(yk | xk), we are able to draw from it directly. The algorithm
in Figure 3.1 corrects for the difference between the importance function and
the target distribution through a combination of weighting and resampling.

The efficiency of a particle filter depends heavily on the ability of the im-
portance function q(xk | yk,xk−1) to successfully generate values that are pro-
portional to f(xk | xk−1)g(yk | xk). Our importance function is described in
Section A.1. The transition function is described in Section A.2.
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Input

p0(x0) Prior distribution for x0

q0(x0|y0) Importance function for x0

f(xk,γk|xk−1) Transition function

g(yk|xk) Likelihood

q(xk,γk|yk,xk−1) Importance function for xk

a Resampling threshold, 0 ≤ a ≤ 1

Algorithm

• Generate initial values and weights

1. For i = 1, · · · , N
(a) Draw x̃

(i)
0 ∼ q0(x0|y0)

(b) Calculate unnormalised weights

w̃
(i)
0 =

g(y0|x̃(i)
0 )p0(x̃

(i)
0 )

q(x̃
(i)
0 |y0)

2. Calculate normalised weights W̃
(i)
0 = w̃

(i)
0 /

∑N
i′=1 w̃

(i′)
0

3. Calculate effective sample size N̂0 = 1/
(∑N

i=1(W̃
(i)
0 )2

)

4. If N̂0 < aN then resample, obtaining N particles x
(i)
0 with weights

W
(i)
0 = 1/N . Otherwise set x

(i)
0 = x̃

(i)
0 with weights W

(i)
0 = W̃

(i)
0 .

Figure 3.1: Particle filter for estimating a back series for one cohort. The description
is modified from Doucet et al. [2009]. We use a standard algorithm for resampling
Carpenter et al. [1999].

(continued on next page)
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(continued from previous page)

• Generate values and weights for remaining intervals

– For k = 1, · · · ,K
1. For i = 1, · · · , N

(a) Draw (x̃
(i)
k , γ̃

(i)
k ) ∼ q(xk,γk|yk,x(i)

k−1)

(b) Set (x̃
(i)
0:k, γ̃

(i)
1:k) = (x

(i)
0:k−1, x̃

(i)
k ,γ

(i)
1:k−1, γ̃

(i)
k )

(c) Calculate unnormalised weights

w̃
(i)
k =

g(yk|x̃(i)
k )f(x̃

(i)
k , γ̃

(i)
k |x

(i)
k−1)

q(x̃
(i)
k , γ̃

(i)
k |yk,x

(i)
k−1)

W
(i)
k−1

2. Calculate normalised weights W̃
(i)
k = w̃

(i)
k /

∑N
i′=1 w̃

(i′)
k

3. Calculate effective sample size N̂k = 1/
(∑N

i=1(W̃
(i)
k )2

)

4. If N̂k < aN or if k = K then resample, obtaining N particles

x
(i)
0:k with weights W

(i)
k = 1/N . Otherwise set x

(i)
0:k = x̃

(i)
0:k with

weights W
(i)
k = W̃

(i)
k .

Output

{x(i)
0:K ,γ

(i)
1:K} N draws from the posterior distribution p(x0:K ,γ1:K |y0:K)
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3.3.2 Estimation via TMB

TMB, short for Template Model Builder, is an R package that has become
increasingly popular for large-scale demographic estimation [Kristensen et al.,
2016, Eaton et al., 2021, Dwyer-Lindgren et al., 2022, Osgood-Zimmerman and
Wakefield, 2022]. TMB is often used for non-Bayesian inference, but can be
used for a large class of Bayesian models, including ones with complicated prior
structures. TMB uses Laplace’s Method [MacKay, 2003, ch. 27] to generate a
fast approximation of the full posterior distribution. The user supplies TMB
with a description of the posterior distribution, on the log scale, via a template
written in the C++ language. (Appendix B gives an example of a template for
estimating cohort counts and rates.) TMB finds the maximum, and then uses
information on curvature to approximate the distribution around this point.
Laplace’s Method requires first and second derivatives of the log posterior, but
TMB calculates these itself, using automatic differentiation [Bell, 2006, Kris-
tensen et al., 2016].

When using TMB to estimate rates and counts for a cohort, we work with
the log posterior

log p(x0:K ,γ1:K | y0:K ,φ), (3.11)

where φ denotes hyper-parameters. TMB requires that all unknowns in the
log posterior be continuous, so we allow counts of stocks and flows to be non-
integers. The use of non-integers does not prevent us from using the Poisson
distribution in our model for events, since TMB uses gamma functions (which
allow non-integer values) in its definition of Poisson densities. The use of non-
integers within the model is not apparent to end-users, who only see summary
statistics, such as means or quantiles, which already take non-integer values.

Laplace’s Method produces an approximation of the posterior distribution,
and, depending on the particular application, approximation errors can be non-
negligible [Kristensen et al., 2016, Osgood-Zimmerman and Wakefield, 2022].
We have conducted simulation experiments to see how large approximation er-
rors are likely to be when estimating cohorts. We find that the errors are on
the order of a few percent at most, and no worse than those of particle filters,
provided the number of people in a cohort is around 20 or more. When cohorts
are smaller, errors in estimates of events can be large in relative terms, though
small in absolute terms.

The simulations also suggested that TMB is an order of magnitude faster
than particle filters. TMB requires much less computer code than hand-written
particle filters. The form of the output – means and covariance matrices for
the joint posterior distribution of the unknowns – is also convenient, in that it
requires relatively little storage space, but can be used to generate arbitrarily
large samples from the posterior distribution. As discussed in Section 5.1.2, we
plan to develop a full-scale system for estimation based on TMB, as a possible
replacement for particle filters.
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3.4 Step 4: Combining accounts, splitting mi-
gration

To produce an account for all England and Wales, we concatenate the individual
Local Authority accounts. The resulting England and Wales account contains
a “Local Authority” dimension alongside the age, sex, cohort, and time. At
this point, the estimation of population, births, and deaths is complete, but
migration requires further work.

Concatenating Local Authority accounts allows us to derive net external
migration for all of England and Wales. The output from Step 3 is vectors

(xstkr , xdthr , xinr , x
out
r )

for every combination of age, cohort, sex, and time. (In Section 3.4, to reduce
clutter, we omit age, cohort, sex, and time subscripts, retaining only subscripts
for geographical areas.) Let xintr1,r2 denote migration between LAs r1 and r2,

with the convention that xintr1,r2 ≡ 0 when r1 = r2. Let xextwr denote immigration
into LA r from external region w, and let xextrw denote emigration from LA r to
external region w. By definition,

xinr =
R∑

r′=1

xintr′,r +
W∑

w=1

xextwr (3.12)

and

xoutr =
R∑

r′=1

xintr,r′ +
W∑

w=1

xextrw . (3.13)

Summing (3.12) and (3.13) over r, and using the fact that

R∑

r=1

R∑

r′=1

xintr′,r =

R∑

r=1

R∑

r′=1

xintr,r′ , (3.14)

we obtain
R∑

r=1

W∑

w=1

xextwr −
R∑

r=1

W∑

w=1

xextrw =
R∑

r=1

xinr −
R∑

r=1

xoutr . (3.15)

The quantity
∑R
r=1

∑W
w=1 x

ext
wr on the left hand side of Equation (3.15) is total

external in-migration, and
∑R
r=1

∑W
w=1 x

ext
rw is total external out-migration. To-

tal external net migration is the difference between external in-migration and
external out-migration.

Figure 3.2 depicts the extra detail on migration that is added during Step 4.
Before Step 4, all R Local Authorities have migration flows, but the origins and
destinations are unspecified. After Step 4, migration flows between every pair
of areas have been estimated, along with flows to and from the outside world.
Though not apparent from the diagram, the sum of all flows into and out of
each Local Authority is unchanged.
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r1 r2 r3

(a) Before disaggregation

r1

r2 r3

(b) After disaggregation

Figure 3.2: Disaggregating migration flows. Diamonds represent local authorities and
arrows represent migration flows. Step 3 yields estimates of total in-migration into
each area and total out-migration out of each area. In Step 4, we split these totals,
to obtain in-migration into and out-migration out of the system as a whole, and flows
between each pair of areas.

The migration flows we would like to estimate are set out in Figure 3.3a, and
the inputs to the estimation are set out in Figure 3.3b. We have data zintr1,r2 for
internal flows and data zextwr and zextrw for external flows. At present, the data on
internal flows come from the Patient Register, and the data on external flows
come from a mix of administrative sources, survey data, and modelling.

The problem depicted in Figure 3.3 is close to the type of problem that
is solved by Iterative Proportional Fitting (IPF) [Fienberg, 1970, Willekens,
1999]. The difference is that we are missing 2 ×W marginal totals: the totals
for immigration and emigration. However, a variant of IPF can be implemented
without these totals.

We rewrite the X matrix in Figure 3.3a as

X =

[
X int Xem

X im 0

]
(3.16)

where X int is an R×R matrix, Xem is an R×W matrix, and X im is a W ×R
matrix. We rewrite the Z matrix in Figure 3.3b as

Z =

[
Z int Zem

Z im 0

]
, (3.17)

with row constraints xout and column constraints xin. We apply iterative pro-
portional fitting, but adjusting only the first R rows and R columns at each
iteration. The system converges to

X int = PZ intQ (3.18)

Xem = PZem (3.19)

X im = Z imQ (3.20)
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where P and Q are diagonal matrices with elements

Pr =
xoutr∑

r′ Qr′z
int
r,r′ +

∑W
w=1 z

em
rw

(3.21)

Qr =
xinr∑

r′ Pr′z
int
r′,r +

∑W
w=1 z

im
wr

. (3.22)

The resulting solution for X satisfies the constraint that out-migration to all
destinations sums to the xout(i)s and in-migration sums to the xin(i)s, as re-
quired. Moreover, zeros on the diagonal in Z are preserved in X.

IPF is also fast, has low memory requirements, and works in more than two
dimensions should this be required in future.
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(a) Flows to estimate

0 zint1,2 . . . zint1,R zext1,1 . . . zext1,W x
out(i)
1

zint2,1 0 . . . zint2,R zext2,1 . . . zext2,W x
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1 x
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(b) Inputs

Figure 3.3: Outputs and inputs for disaggregating subnational migration flows. The
xint and xext terms are the unknown flows we wish to estimate. The z terms are
reported migration flows. The xin and xout terms are outputs from running the base
model independently on R subnational areas.
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Chapter 4

Dynamic Population Model
for England and Wales

In this chapter, we provide a detailed description of the methods used to generate
our first full set of estimates by single year of age (0, 1, . . . , 105) and sex (Female
and Male) for all 331 Local Authorities in England and Wales. We illustrate
our results using the example of the Local Authority of Cambridge.

4.1 Data sources

In this section we describe the data currently available to the DPM, and pro-
cess of reformatting the data for inclusion in the DPM. The input data and
reformatting are likely to change in future versions of the DPM.

4.1.1 Population data

Mid-year estimates (MYE) Mid-year estimates for 2011 consist of the 2011
Census counts rolled forward from Census Day (27 March) to mid-year (30
June). Because of the proximity to the census, we assume that these data
are of high quality. MYE are available by sex, single year of age (0–90+)
and Local Authority. Although MYE, plus associated measures of uncertainty,
are available for the whole period 2011–2021, we only use estimates for 2011.
The methods used for splitting the 90+ age group into single years of age are
discussed in Section 4.2.

NHS General Practice Patient Register (PR) The NHS GP Patient
Register provides population estimates by sex, single year of age (with no upper
bound), and Local Authority for the years 2011–2020. PR data give the number
of individuals registered with a GP surgery in England and Wales.

Statistical Population Dataset, version 3 (SPD3) Version 3 of SPD
provides estimates by sex, single year of age (0–90+), and Local Authority,
at June 30, in 2011, and in 2016–2020. SPD are derived from administrative
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data by combining various sources of “activity”, and applying rules that predict
whether an individual is likely to belong to the usually-resident population.

4.1.2 Births, deaths, and migration data

Births The administrative system from which we derive aggregate counts of
births provides us with counts of births by sex, Local Authority, Lexis triangle,
and single year of age of mothers (at the time of birth), for years ending June
2012 to June 2022. We assume the data to be of very high quality. The 2022
data is provisional as some births may be missed in the most recent months
because of lags in registrations, which can legally take place up to 42 days after
the birth.

Deaths The administrative system from which we derive aggregate counts of
deaths provides us with counts of deaths by sex, Local Authority, Lexis triangle,
and single year of age, for years ending June 2012 to June 2022. Deaths data, like
births data, is assumed to be of very high quality. The 2022 data is provisional
as some deaths may be missed for the most recent months because of lags in
registrations and coroner related delays.

Internal migration We have estimates, constructed with ONS, of internal
migration counts by sex, Local Authority of origin, Local Authority of desti-
nation, and single year of age, for years ending June 2012 to June 2022. Data
for the years ending June 2012 to June 2020 use address changes in GP regis-
trations from the NHS Patient Register (PR) and Personal Demographic Ser-
vice (PDS), and higher education registrations from Higher Education Statistics
Agency (HESA) data, to measure moves between Local Authorities within Eng-
land and Wales. HESA data are used to move students to university addresses
and to adjust for lags in students’ post-study moves, ahead of a recorded GP
re-registration. Age refers to age at 30 June rather than age at the date of the
recorded move.

Data for years ending June 2021 and June 2022 use scaling between MYE-
based and PDS-based internal migration estimates in 2018 and 2019. This
is then used to impute MYE-based internal migration estimates for 2021 and
2022. These provisional imputed estimates are not comparable with previously-
published estimates, and there is no adjustment for students’ post-study moves.
We are researching ways to produce more timely estimates of internal migration.

Cross-border flows Cross-border flows are migrations to and from (a)
England and Wales and (b) Scotland and Northern Ireland. Estimates of cross-
border flows are available by sex, Local Authority, and single year of age, for the
years ending June 2012 to June 2022. Between 2011 and 2020, we use estimates
of cross-border moves from the MYE. The total flows to and from constituent
countries of the UK are agreed between the Office for National Statistics (ONS),
National Records of Scotland (NRS), and the Northern Ireland Statistics and
Research Agency (NISRA), based on records of in-migration to the relevant
country.

Data for the period 2021 to 2022 use scaling between MYE-based and PDS-
based cross-border migration estimates for 2018 to 2019. This is then used to
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impute MYE-based cross-border migration estimates for 2021 to 2022. These
provisional imputed estimates are not comparable with previously published
estimates and have not been agreed between the constituent countries of the
UK. We are researching ways to produce more timely estimates of cross-border
moves.

International migration International migration estimates are available
by sex, Local Authority, and single year of age (0–90+), for the years ending
June 2012 to June 2022. Between 2011 and 2020, we use Long-Term Inter-
national Migration (LTIM) estimates [ONS, 2022a]. They are predominantly
based on the International Passenger Survey (IPS), which was suspended in
March 2020 because of the COVID-19 pandemic.

Experimental estimates for March 2020 to June 2020 and for the year end-
ing 30 June 2021 are produced using Home Office Exit Checks data and the
Department for Work and Pensions Registration and Population Interaction
Database (RAPID). This new method makes greater use of administrative data
than previous ONS international migraiton estimates, which relied on IPS data
and statistical modelling. Data from March 2020 onward are not comparable
with previous estimates and may be subject to revisions.

International migration estimates for 2022 are based on forecasts. Year end-
ing June 2022 migration estimates published on 24 November 2022 will be in-
corporated in future iterations. There is also active research on methods to
improve international migration estimates that we will need to address when
any changes are implemented.

4.2 Model specification

System models, data models, and demographic counts and rates are currently
estimated separately for each Local Authority. Our notation in this section
omits references to Local Authority.

4.2.1 Data models for England and Wales

In our current estimates, for simplicity, we treat the births and deaths data as
error-free. This assumption could be relaxed in future versions of the model.
Currently our model specification does not include data or data models for
migration counts, so that all information on migration enters through the hyper-
parameters for migration rates. Future versions of the model will incorporate
migration data and data models. Our data models for population stocks, with
the stocks ordered from most reliable to least reliable, are as follows.

Mid-year estimates (MYE) We assume that mid-year estimates follow
the normal-distribution data model of Equation 2.9. The mid-year estimates in
2011 are assumed to be unbiased, and the coverage ratio, ρMYE

asct is set to 1 in
all cells. ONS publishes estimates of the uncertainty in the MYE, in the form
of standard errors σ̂MYE

ast disaggregated by single year of age, sex, and Local
Authority [ONS, 2022b].
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We split the published population counts by assuming that each LA’s pop-
ulation has the same age-structure as England and Wales as a whole. (ONS
publishes single year of age estimates beyond age 90 for England and Wales,
but not for individual LAs.) We derive disaggregated standard errors by as-
suming that the coefficient of variation for disaggregated cell is equal to the
coefficient of variation for the aggregated cell to which it belongs.

σ̂MYE
ast =





σ̂MYE
90+,s,t,

yMYE
90+,s,t,

yMYE
ast , a ≥ 90

σ̂MYE
ast , otherwise

(4.1)

Statistical Population Dataset Version 3 (SPD3) Although we have
SPD3 counts for 2011, we do not include these directly in the model as they
are indirectly used through their role in estimating coverage ratios. The SPD3
counts for 2016-2020 are assumed to follow the normal-distribution data model.
As with MYE, we use national-level counts by single-year ages 90–105 to split
out LA-level counts in age group 90+. We do not assume that SPD3 data are
unbiased and set coverage ratios using

ρSPD3
asct = ySPD3

asct /q
pop
asct (4.2)

The coverage ratios are estimated by smoothing the ratio of SPD3 to MYE esti-
mates for 2011. The smoothing is performed by fitting the generalized additive
model

logE(ySPD3
a,2011) = log yMYE

a,2011 + f(a2011), (4.3)

where ySPD3
a,2011 ∼ Poisson(E(ySPD3

a,2011)) , and f is a smooth function of age. Separate
models are fitted for each Local Authority by sex combination. We use an
adaptive smoothers from the mgcv R package [Wood, 2011], with the default
setting of P-splines for the smoothing and penalty bases. We assume that
coverage ratios remain constant at their 2011 levels over the period 2016–2020.

Figure 4.1 compares the raw 2011 SPD coverage ratios ySPD3
a,2011/y

MYE
a,2011 with

the smoothed ratios ρ̂SPD3
a,2011 in the Cambridge Local Authority. We calculate

standard deviations for these coverage ratios from the confidence intervals for
SPD3-based population estimates published in ONS [2020].

Patient Register (PR) We use the normal-distribution data model for the
PR-based population estimates for 2012–2015, with coverage ratios calculated
using the same method as for the SPD3.

Census 2021 One notable data source that has not been included is Census
2021 data. We withhold Census 2021 data from the model so that we can use
it as a yardstick to measure the accuracy of the DPM 2021 estimates. Future
versions of the DPM will include Census 2021 data.

4.2.2 System models

We describe how we estimate the hyper-parameters for the system models for
births, deaths, in-migration, and out-migration. Since the methods are almost
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Figure 4.1: Observed ( ySPD3
a,2011/y

MYE
a,2011) and smoothed (ρ̂SPD3

a,2011) coverage ratios for
females in the Cambridge Local Authority.

identical for all demographic series, most notation in this section omits super-
scripts denoting series.

We assume that, independently for each Local Authority, rates are drawn
from gamma distribution

γasct ∼ gamma

(
µasct
δ

,
1

δ

)
, (4.4)

which has mean µasct and variance µasctδ.
Values for µasct are estimated by smoothing observed rates independently

within each sex s, using generalized additive models of the form

logE(yat) = log êat + xatθ + f(a, t) (4.5)

where yat is observed counts; êastr is exposure calculated from coverage-adjusted
SPD3 data, or, in years where there are no SPD3 data, an imputed SPD3; xastr
is a row vector from a model matrix containing indicator variables for individual
ages 0–30; θ is a vector of coefficients to be estimated; f(a, t) is a random factor
smooth of an interaction between age and time; and yat ∼ Poisson(E(yat)).
There is no manual specification of knots.

For the migration models there is an L1-penalty on the linear terms xat. The
linear terms capture the peaks observed in the age profile of migration that are
associated, for example, with moves to university or boarding school. The birth
models omit the linear term, as the observed age profiles do not exhibit sharp
peaks. The death model includes one indicator variable for age 0 without an
L1-penalty. The offset term is used in all models except those for in-migration,
where exposure is undefined.
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The exposure term for rates is calculated as

êat =
ŷSPD3
at + ŷSPD3

a,t−1
2

(4.6)

where

ŷSPD3
at =





ρ̂SPD3
at (β̂0 + β̂1tat)y

PR
at , t < 2016

ρ̂SPD3
at ySPD3

at , 2016 ≥ t < 2021

ρ̂SPD3
at ỹSPD32020

at , t ≥ 2021.

(4.7)

Values β̂0 and β̂1 in (4.7) are estimated using

ySPD3
at /yPR

at = β0 + β1tat + εat, (4.8)

where εat
iid∼ N (0, σ2). The ỹSPD32020

at are SPD3 estimates calculated from the
demographic accounting identity starting from the SPD3 stock estimate in 2020,
ySPD3
a,2020 using observed births, deaths and combined migration flows to estimate

for the years 2021 and 2022. The ỹSPD32020
at in (4.7) are SPD3 estimates calcu-

lated from the demographic accounting identity starting from the SPD3 stock
estimate in 2020, ySPD3

a,2020, using observed births, deaths and combined migration
flows to estimate for the years 2021 and 2022.

The generalized additive models used for estimation in our initial publica-
tions ONS [2022c] and ONS [2022d] only uses a smooth function of age as a
predictor, with no linear term, and is fitted independently for each year.

Figure 4.2 compares the observed combined in-migration rates for females in
Cambridge aged 0 to 50 for the year ending 30 June 2021 (“unsmoothed”), with
our initial estimates (“GAM”) and the improved estimates (“GAM-LASSO”).
The new approach has been effective in dealing with the differing and sometimes
extreme spikes in migration observed in different Local Authorities. The initial
GAM model oversmooths in-migration, especially around ages 17-23.

Figure 4.3 shows the expected rates used as inputs for the base model for
females in Cambridge.

We calculate separate values for the dispersion parameter δ for each com-
bination of Local Authority and sex. The calculations are based on published
ONS estimates of standard errors. For each combination of LA, sex, and demo-
graphic series, we calculate dispersions by age and time, δat, and then take the
maximum of these values.

In the case of birth and death rates, we assume that all uncertainty arises
from the population denominator. Using Taylor linearisation, and assuming
Var(êa,s,t,r) = Var(ySPD3

a,s,t,r), the approximate variances of birth and death rates
are

Var(γbthat ) = (
xbthat

êat
)2

Var(êat)

ê2at
(4.9)

Var(γdthat ) = (
xdthat

êat
)2

Var(êat)

ê2at
, (4.10)
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Figure 4.2: Combined in-migration for females in Cambridge ages 0-50 for the year
ending 30 June 2021, observed counts (“unsmoothed”), estimates used in [ONS, 2022d]
(“GAM”) estimates from equation 4.5 (“GAM-LASSO”)

which yields dispersion terms

δbthat =
êat
xbthat

Var(γbthat ) (4.11)

δdthat =
êat
xdthat

Var(γdthat ). (4.12)

Uncertainty for in-migration yinat is calculated assuming that the counts of
immigration, yin,extat and internal (including cross-border) migration, yin,intat , are

independent. Values for Var(yin,extat ) and Var(yin,intat ) are calculated as part of the
process for estimating uncertainty in mid-year estimates. We calculate terms
for combined in-migration using

δinat =
Var(yinat)

yinat
. (4.13)

We calculate dispersion for out-migration in the same way, but with the ad-
ditional assumption that all uncertainty comes from the numerator, and none
from the population denominator.

4.3 Results for Cambridge Local Authority

To illustrate our methods, we present results for the Local Authority of Cam-
bridge. We estimated counts and rates for Cambridge using the particle filtering
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Figure 4.3: Estimated expected flow rates for females in Cambridge based on variations
of the model in equation 4.5

method described in Section 3.3.1. Model fitting with 10,000 particles took 15:27
minutes on a laptop with 12th Gen Intel(R) Core(TM) i5-1250P, 1700 Mhz, 12
Cores, 16 Logical Processors, with no parallel processing. This is a dramatic
speed-up compared with the many hours it would take to fit an equivalent model
in demest.

Figures 4.4 and 4.5 show population estimates for 2020 and 2021 for females
in Cambridge. Figure 4.4 compares DPM estimates with population counts from
SPD3 and MYE. Posterior means from the DPM are shown as triangles while
the thin vertical line shows the 95% credible interval and the thicker vertical
lines show 65% credible intervals. The DPM estimates are close to SPD3 and
are noticeably different from MYE, especially for the ages around 30.

As is apparent in Figure 4.5, while the DPM estimates differ slightly from
the Census 2021 data, they are likely to be closer to the census results than the
values that would be obtained from rolling forward MYE 20202 estimates. The
most noticeable difference between the Census 2021 and DPM estimates occurs
at the ages 18–21 and 26–27. The differences at ages 18 and 19 may be caused
by the age definitions used for migration data in the DPM, where age is defined
as age at the end of 30 June, which appears to shift the age profile to the right.

Figures 4.6 and 4.7 compare observed counts to DPM estimates of combined
in-migration and out-migration for females in Cambridge in 2021. DPM esti-
mates of out-migration are noticeably higher than the observed counts for ages
20 to 22, and also noticeably higher for in-migration for age 20. The apparent
upward bias in the DPM estimates is probably a result of the smoothing meth-
ods used for the rates, which do not currently have a specific intervention for
the effect of the COVID-19 pandemic.
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Figure 4.4: Population estimates for females in Cambridge, 2020. MYE and SPD3
estimates are not coverage adjusted. DPM estimates include a thin vertical line rep-
resenting a 95% credible interval and a thick vertical line for a 65% credible interval.

Figure 4.8 shows the split of combined in-migration to Cambridge in 2020.
Combined in-migration is split into international immigration, cross-border flows
from Scotland and Northern Ireland, and internal migration from other Local
Authorities. In this example, we do not apply the full iterative proportional
fitting described in Section 3.4, as we have not run all Local Authorities. In-
stead we split draws from the posterior for combined in-migration based on the
proportion of total observed flows for international immigration, cross-border
flows and internal inward migration.
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Figure 4.5: Population estimates for females in Cambridge, 2021. DPM estimates
include a thin vertical line representing a 95% credible interval and a thick vertical
line for a 65% credible interval.
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Figure 4.6: Combined in-migration for females in Cambridge, 2021. DPM estimates
include a thin vertical line representing a 95% credible interval and a thick vertical
line for a 65% credible interval.

38



0

500

1,000

1,500

0 10 20 30 40 50 60 70 80 90+
Age

C
ou

nt Estimate
Observed
DPM

Figure 4.7: Combined out-migration for females in Cambridge, 2021. DPM estimates
include a thin vertical line representing a 95% credible interval and a thick vertical
line for a 65% credible interval.
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Figure 4.8: Components of combined in-migration for females in Cambridge, 2020.
Estimates include a thin vertical line representing a 95% credible interval and a thick
vertical line for a 65% credible interval.
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Chapter 5

Extensions

The development strategy of the DPM project has been to start with the sim-
plest possible system that can produce Local Authority estimates, and then
progressively extend the system, based on performance and user needs. In this
chapter, we outline a list of possible extensions. The extensions fall into four
groups:

Accuracy, robustness Improve the accuracy of the estimates, and make the
production system more maintainable and reliable.

Inputs Expand the range of data sources that the DPM can ingest.

Outputs Expand the level of detail the DPM provides, and the topics that it
addresses.

Checking Build mechanisms to monitor the performance of the DPM.

5.1 Increasing accuracy, robustness

5.1.1 Harmonisation of national and subnational estimates

Running the DPM on Local Authority-level data and then summing across LAs
will not in general produce the same values as running the DPM on England
and Wales-level data. The amount of divergence depends on factors such as the
geographical distribution of errors in the data, and the amount of flexibility in
system and data models. It is difficult to predict, from first principles, whether
adding up disaggregated results or working entirely with aggregate data is likely
to give more accurate estimates.

At the time of writing (January 2023), we have only just begun the process
of constructing full scale demographic accounts for all 331 Local Authorities
in England and Wales. We therefore do not currently have a good sense of the
consistency between local-level and national estimates. If it turns out that there
are substantial differences, then we will need to understand the source of these
differences, and revise the DPM accordingly.
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5.1.2 Full-scale estimation using TMB

Experiments with TMB suggest that it may offer substantial advantages over
particle filters for estimating counts and rates within cohorts (Section 3.3.) The
extra speed offered by TMB is more than a convenience. Faster computation
times make it easier to cope with unexpected problems, which is important for
meeting production deadlines. Some proposed extensions, such as the use of
multiple draws (Section 5.1.4) are only feasible if computation times can be
improved. The ability to fit models more quickly makes it easier to explore
alternative specifications, or to carry out simulation studies assessing model
performance. We will revise the R packages, replacing particle filters with TMB,
and then test whether TMB performs well on full scale accounts.

5.1.3 Hierarchical models for birth, death, and migration
rates

Our long-term goal is to build hierarchical models for birth, death, and mi-
gration rates, with prior structures that can properly account for regularities
such as common age-sex profiles or time trends. Our current models for rates
have a much simpler structure, and are estimated independently for each Lo-
cal Authority. Any future models will build on our current methods for dealing
with migration peaks, which is one of the most challenging aspects of small-area
demographic estimation. We will also build on other ONS work programs on
estimating and forecasting demographic rates. We will investigate the use of
TMB, which is specifically designed for large-scale hierachical models.

5.1.4 Use multiple draws of demographic rates

Experiments with the current version of the DPM suggest that, although it
produces realistic credible intervals at the lowest level of detail – cells defined
by age, cohort, sex, Local Authority, and time – it produces spuriously narrow
credible intervals for aggregates of these cells, such as the total population of a
Local Authority. These narrow credible intervals reflect the fact that the DPM
currently has no way of accounting for correlations across age, cohort, sex, Local
Authority, and time, with each cell being treated as independent.

Any change to the model to account for these correlations needs to preserve
the conditions, described in Section 2.2.2, that allow for the use of cohort state
space methods. One way of doing so is to enhance the way that we represent
hyper-parameters, moving from point estimates to multiple draws. Taking a
multiple-draws approach would require changes to steps two and three of our
four-step estimation process, as summarised in Table 5.1.

Preliminary experiments of the effect of using multiple draws for parameters
in the data models suggest that a multiple-draws approach does lead to more
realistic credible intervals for aggregates. The larger the number of draws, M ,
the better we would be able to approximate the full multivariate distribution of
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Table 5.1: Current estimation approach versus proposed multiple-draws approach to
steps 2 and 3 of the estimation process

Current approach Proposed approach

Step 2 Construct point estimate
φ̂ of hyper-parameters φ

Construct draws {φ(m)}Mm=1,
from the posterior distribution
for hyper-parameters φ

Step 3 Obtain draws of counts
and rates {x(s), γ(s)}Ss=1

from p(x, γ|y, φ̂)

Obtain draws of counts and
rates {x(sm), γ(sm)}S/Ms=1 from
p(x, γ|y, φ(m)), for m = 1, . . . ,M

x and γ, but the longer the computations would take. We will experiment with
trade-offs.

5.1.5 Importance sampling to reduce approximation er-
rors

The current DPM strategy of using an initial approximation of the demographic
account to estimate hyper-parameters is fast and simple. It does, however,
introduce approximation errors. Adding a final importance sampling-resampling
[Smith and Gelfand, 1992] step to the estimation process is a potential method
for reducing these errors.

For each draw (x(s), γ(s), φ(s)) from the joint posterior distribution of all the
unknowns, we would calculate importance weight

w(s) =
f(x(s), γ(s), φ(s))

g(x(s), γ(s), φ(s))
, (5.1)

where φ collects holds the hyper-parameters for the system and data models,
f(x, γ, φ) is the (unnormalised) density for the target posterior distribution,
and g(x, γ, φ) is the density under the approximate model used in the calcula-
tions. We would rescale the weights to form selection probabilities, and use the
probabilities to resample draws from the posterior distribution. The resampled
posterior distribution would hopefully be a better approximation of the true
distribution than the original draws.

If we are able to draw accurately from p(x, γ|y, φ), then the weights reduce
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to1

w(s) =
1

p(x̂|φ(s)) , (5.2)

where x̂ denotes our initial approximation of the account. Applying these
weights during resampling would reduce the influence of x̂ on the posterior
distribution.

If we were to pursue the option of importance sampling, we would experiment
with smoothed versions of the importance weights, based on Vehtari et al. [2015].

5.1.6 Special populations

The current ONS system for generating mid-year population estimates contains
dedicated procedures for ‘special populations’ that are difficult to deal with
through standard procedures. Examples include the armed forces and prisoners,
both of which have ‘static’ age structures that remain constant over time.

The DPM may have less trouble than the current ONS population estimation
system in dealing with static age structures, because, unlike the current system,
it makes use of ongoing information on population stocks. Where data on the
size and age-sex structure of special populations is available, we can use it
alongside data on births, deaths, and migration. Moreover, if we have evidence
that data on special populations contain over-coverage or under-coverage, we
can capture this in our data models.

If these measures are not sufficient, it may be necessary to split special pop-
ulations off from the general population. We could, for instance, divide a local
authority with a large special population into two, and use one set of parameters
and data for the special population and another set for the remainder.

ONS demographers have extensive experience dealing with special popula-
tions. They will be involved in identifying special populations, designing models,
and evaluating results.

5.2 Expanding inputs

5.2.1 Expanding the suite of data models

Results from the DPM are sensitive to the specification of the data models, with
different models leading to different point estimates and credible intervals. The
performance of any one data model depends on which other data models are
in use. A complicated and flexible data model can perform well, for instance,

1

g(x, γ, φ) = p(x, γ|y, φ)p(φ|x̂)
∝ p(y|x, γ, φ)p(x, γ|φ)p(x̂|φ)p(φ)
= p(y|x, φ)p(x|γ)p(γ|φ)p(φ)p(x̂|φ)
= f(x, γ, φ)p(x̂|φ)
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when other data models are simple and constrained, but create computational
problems when they are not. It is therefore helpful to have a suite of data
models to choose from, particularly when tackling new applications, or when
adding or omitting data sources.

Our current data models are relatively simple and generic. Our main focus
will be on developing models that are optimised for specific tasks or datasets.
Examples include the following:

Combined migration counts The in-migration and out-migration data sup-
plied to the base model aggregate over multiple datasets, such as datasets
dealing with internal migration and datasets dealing with international
migration, with the relative share of each dataset varying by age, sex, and
area. Expanding the data models so that they incorporate information
about the composition of the data might improve performance.

Components of SPDs Statistical Population Datasets (SPDs) are constructed
by linking individual-level data from multiple administrative datasets and
then applying a set of business rules to minimise under-coverage and over-
coverage. Some of the datasets are available much more quickly than
others, but the final SPD cannot be created until all datasets are avail-
able. There may be value in constructing an approximation of the SPD
using only the most timely components, to use for recent periods where
the final SPD is not available. If such a dataset was available, we would
ideally use it with a data model that took its special features into account.

Reporting lags There is often a delay between the time when people change
residence and the time when they update their administrative data: for
instance, people may not update their residential address on the patient
register until they visit a doctor. In cases where there is good-quality
information on characteristics of reporting lags, exploiting this information
may lead to more accurate estimates of the timing of events across the year.

Splitting migration Our procedures for splitting migration streams, described
in Section 3.4, assume constant levels of accuracy across subnational areas
and datasets. This is equivalent to assuming a very simple data model. If
experience suggests that this simple data model is inadequate, we could
extend it by, for instance, incorporating weights into the iterative propor-
tional fitting process that reflected relative reliability [Stone et al., 1942,
Deville and Särndal, 1992, Stone, 1961, Lahr and De Mesnard, 2004].

5.2.2 Incorporating aggregated data sources

ONS is investigating a variety of novel data sources that are more timely than
existing data sources, or that provide information on physical location rather
than usual residence (see Section 5.3.4.) Examples include anonymised data on
mobile phone use, or data on services such as gas, electricity, or waste water
treatment.
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Many of these data sources contain little or no information on age, cohort,
or sex. Data that does not distinguish cohorts and sexes is difficult to use
within cohort state space methods because, as discussed in Section 2.2.2, cohort
particle filters require cohorts to be conditionally independent, and conditional
independence is lost if cohorts or sexes share the same data values.

One possible solution is to pre-process the data, splitting out any shared
values before the data is entered into the base model. The disadvantage of this
approach is that it disguises uncertainties about the age-sex distribution. If
these uncertainties are substantial, as is likely with data on recent trends or on
the population physically present, then the results could be misleading.

An alternative approach that, if feasible, could deal more satisfactorily with
uncertainty would be to use an importance sampling scheme, similar to the
one that we are considering for reducing approximation errors (Section 5.1.5).
Let ydis denote disaggregated data and yag aggregated data. We would like to
estimate

p(x|yag, ydis) ∝ p(yag, ydis|x)p(x), (5.3)

which, if we assume conditional independence of the y variables, we can write
as

p(yag|x)p(ydis|x)p(x) (5.4)

Running the base model only on disaggregated data would yield draws from
p(ydis|x)p(x). Resampling using weights proportional to p(yag|x) would yield
draws from (5.4). The resampling would increase the relative share of draws
from the base model that aligned with the aggregated data.

5.2.3 Coverage surveys

ONS is investigating the potential role of coverage surveys in future systems for
population and social statistics. Coverage surveys can play two potential roles
within the DPM: as an input to performance monitoring, and as an input to
data models.

A coverage survey for an administrative data source could play the same
role in monitoring the performance of the DPM as the Census Coverage Survey
has traditionally done in monitoring the performance of ONS’s current system
of population estimation. Estimates of under-coverage and over-coverage from
the coverage survey could be used to adjust counts from the administrative data
source, and produce population estimates that were, to at least some extent,
independent of those of the DPM. Comparing these population estimates with
those of the DPM would provide evidence on the accuracy of the DPM, just as
comparisons with the census-year population estimates provide evidence on the
accuracy of ONS’s current system of population estimation.

Performance monitoring based on coverage surveys, although valuable, does
have limits. The sample sizes needed to detect small errors in population
estimates are extremely large, particularly for disaggregated estimates. Non-
response to the coverage survey can compound the problem, by reducing sample
sizes and complicating the adjustment process.
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A second potential role of coverage surveys is to help with the estimation
of parameters in data models. Coverage surveys can, for instance, be used to
estimate parameters such as the net coverage ratio ρasct and variance σasct in
the normal-distribution data model (Equation (2.9) on page 16). In doing so,
they can help anchor estimates across all series.

The use of coverage surveys for performance monitoring and the use within
data models are partly in conflict with each other. If a coverage survey is
an input to a data model, for instance, then the survey cannot provide an
independent check on the performance of the DPM. There might, nevertheless,
be ways of at least partly achieving both goals. The DPM team might, for
instance, compare estimates with and without a coverage survey as a way of
gaining insights into the performance of the DPM, but use the full model, with
all available coverage surveys, whenever it was producing official population
estimates.

5.3 Expanding outputs

5.3.1 Monthly estimates

Monthly estimates of population stocks and flows could be derived either by
temporally disaggregating the annual demographic account from the base model
or by direct estimation using monthly data as inputs for the modelling.

Temporal disaggregation

Monthly estimation could be carried out once the annual demographic account
have been constructed. We obtain monthly estimates for births and deaths
straight from the monthly registration data, which we treat as error-free. We
obtain monthly estimates for in-migration and out-migration using temporal dis-
aggregation techniques called benchmarking, which are widely used in national
accounts [Dagum and Cholette, 2006, Eurostat, 2018, IMF, 2018]. We derive
monthly population counts by applying demographic accounting to annual pop-
ulation stocks and monthly births, deaths, in-migration, and out-migration.

We describe here the procedures for benchmarking in-migration; the pro-

cedures for out-migration are identical. Let w
in(i)
tcs be the total number of in-

migrations belonging to cohort c and sex s during year t, according to the ith

draw from the posterior distribution for the base model. A value for w
in(i)
tcs is

obtained by adding together the x
in(i)
kcs that refer to year t. (Cohorts that are

born or extinguished during year t have one x
in(i)
kcs , and other cohorts have two:

one upper Lexis triangle and one for the lower Lexis triangle.) We do not distin-
guish between the case when the model has been applied to the whole country
and the case when it has been applied to a local area, since the calculations are

the same in both. We need to estimate monthly in-migration u
in(i)
mcs , where m

indexes month. Let δt denote months that fall within year t. We require that

monthly values for the cohort sum to the annual value,
∑
m∈δt u

in(i)
mcs = w

in(i)
tcs .
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We have data zinmcs that is an imperfect measure of u
in(i)
mcs and that does not, in

general, add up to w
in(i)
tcs .

Many different benchmarking procedures have been developed. We are ex-
perimenting with the following procedures.

Pro-rata Estimated values are proportional to monthly data,

uin(i)mcs =
w

in(i)
mcs∑

m∈δt z
in
mcs

zinmcs. (5.5)

The pro-rata method is simple, can cope with zeros (unless
∑
m∈δt z

in
mcs =

0), and always leads to non-negative values. However, while it preserves
monthly growth rates of zinmcs it can produce sharp jumps between adjacent
years.

Proportional Denton Proportional Denton is applied over multiple years,
and promotes smoothness, including between adjacent years, by minimis-
ing changes in the ratio between estimates and data. The modified pro-
portional first difference Denton estimates that we are exploring are the

set of u
in(i)
mcs that minimise

∑

m

(
u
in(i)
mcs

zinmcs
−
u
in(i)
m−1,c,s
zinm−1,c,s

)
, (5.6)

subject to the constraint that monthly estimates add up to annual esti-
mates.

Additive Denton The modified additive first difference Denton is equivalent
to proportional Denton, except that it minimises the quantity

∑

m

(
(uin(i)mcs − zinmcs)− (u

in(i)
m−1,c,s − zinm−1,c,s)

)2
. (5.7)

Wavelet-based approach [Sayal et al., 2017] describe a novel wavelet-based
approach to benchmarking. The approach may be useful for cohorts with
many small counts and a few large counts, as it can isolate extreme move-
ments, rather than distributing them across many months, which, among
other things, can cause negative values in Denton methods. The basic
benchmarking part of the method works by replacing the low frequency

wavelets in a wavelet decomposition of zinmcs with those from w
in(i)
tcs which,

when back transformed to the time domain, meets the benchmarking con-
straint.

Sometimes monthly estimates are required before annual estimates for the
year in question have been constructed. In these situations, benchmarking in-
volves an element of extrapolation. There is an extensive discussion of these
issues within the benchmarking literature [Eurostat, 2018].
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Having calculated monthly estimates for cohorts, we need to convert them
into monthly estimates for single year of age groups. If a cohort spans the
interval between exact age a and exact age a + 1 on 1 July, then it will span
the interval between exact age a + 1

12 and exact age a + 1 + 1
12 on 1 August,

the interval between exact age a+ 2
12 and exact age a+ 1 + 2

12 on 1 September,
and so on. We convert these values into conventional single-year age groups
by taking weighted averages, with the weights proportional to the amount of
overlap between cohorts and age groups.

Direct monthly estimates

There is no theoretical obstacle to deriving monthly estimates directly, using
one-month rather than one-year widths for periods, age groups, and cohorts.
The obstacles are instead practical. The computer systems that we have been
using for the 2022 prototype cannot cope with the volume of data or calcu-
lations, and the confidentiality protocols do not permit the required level of
disaggregation.

The practical obstacles to direct calculation of monthly estimates are likely
to be reduced as we move into a full production system. Direct calculation
would almost certainly be possible when adding to an existing series, as opposed
to estimating an entire back series (Section 2.6). As the production system
matures, we will compare the two approaches to adding to existing series.

5.3.2 Satellite accounts

Satellite accounts are one way in which the System of National Ac-
counts may be adapted to meet differing circumstances and needs.
They are closely linked to the main system but are not bound to em-
ploy exactly the same concepts . . . They may also be used to explore
new methodologies and to work out new accounting procedures that,
when fully developed and accepted, might become absorbed into the
main system over time [Eurostat, 2022].

Economic statisticians have used satellite accounts as a way of expanding
the scope of national accounts without overloading the main account. Social
statisticians could use the same strategy with demographic accounts. Stone
[1984, p. 26] argues for this approach, suggesting that statisticians assemble a
basic set of relatively simple data, supplemented by “subsidiary sets” of other
data, all employing the same conceptual framework.

Some possible candidates for satellite accounts include:

Family and household Counts of families and households, disaggregated by
type. Estimates of the distribution of individuals across families and
households would need to be consistent with estimates of total numbers
of individuals in the main account. (See Section 5.3.5.)
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Population present Estimates of numbers of people physically present at a
given point in time, possibly in combination with estimates of the usually-
resident population. (See Section 5.3.4.)

Labour force Population disaggregated by labour force status (employed, un-
employed, not in the labour force), and flows between these statuses.

Education Population disaggregated by current enrolment status or by edu-
cational attainment, and flows between these statuses.

Ethnicity Population disaggregated by ethnicity, possibly with flows between
statuses reflecting changes in ethnic identification.

Long-term population projections Nowcasts and very short-term forecasts
can be handled easily with existing system models. However, longer-term
forecasts would typically need longer historical series and specialised mod-
els for hyper-parameters.

5.3.3 Additional dimensions

Demographic accounts can contain other dimensions besides age, sex, and sub-
national area. Possibilities include, for instance, country of birth, and enrolment
in school or university. Adding extra dimensions can make the account more
useful. There is, for instance, substantial policy interest in the location and char-
acteristics of students. Adding extra dimensions can help stabilise estimates, if
groups identified by the new dimension behave differently from each other. Ex-
plicitly distinguishing between students and non-students, for instance, might
help predict differences among local authorities.

To add a new dimension to the DPM, we need to disaggregate all counts and
rates along this new dimension, and apply cohort state space estimation for each
of the resulting combinations of cohort, sex, and the new dimension. Under the
current framework, all input data needs to include the new dimension, though
Section 5.2.2 discusses one way this requirement might be relaxed.

If the characteristic that is measured by the new dimension can change,
then we need to include these changes in status in the modelling. We can do
so by expanding our definition of migration. When estimating counts and rates
for 20-year-old female university students, for instance, we would add university
enrolments to the generic “in-migration” component and add graduations to the
generic “out-migration” component. The splitting of migration flows described
in Section 3.4 would then include the separation of enrolments and graduations
from other types of inflows and outflows. The splitting of flows across multiple
dimensions could be accommodated through a straightforward extension of our
current methods, in which the Z and X of Equations (3.16)–(3.22) changed
from matrices to multiway arrays.

A candidate for an additional dimension could be trialled in a satellite ac-
count. If the satellite account proved to be feasible and useful, then the dimen-
sion could be considered for inclusion in the main account.
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5.3.4 Usual residence versus population present

Official population estimates almost always refer to the “usually resident” pop-
ulation of a country or area, that is, to people who have their home, or spend
most of their time, in the country or area. The usually-resident population of a
country or area is distinct from the number of people physically present in that
country or area. The two types of population are related as follows:

Population
present

=
usually-
resident

population
+

non-residents
temporarily

present
-

residents
temporarily

absent.

(5.8)

Estimates of the usually-resident population and population present serve
different purposes. The usually-resident population is more relevant, for in-
stance, when deciding how big a school should be, since children typically attend
a school near where they live. In contrast, population present is more relevant
when deciding where to place carparks, since areas with few residents, such as
central business districts, can still have many cars.

Most administrative data on populations are based on registration for a
service, often requiring a residential address, and hence measure the usually-
resident population. Many of the novel data sources that are currently under
investigation at ONS, such as wastewater data, serve as proxies for the popula-
tion present. Mobile phone data are unusual in that, in addition to measuring
population present, they can also measure the usually-resident population, using
the night-time population as a proxy for the usually-resident population (ideally
with some minimum number of nights.)

When designing a data model for a new data source, it is important to be
clear whether the data source is to be treated as a measure of the usually-
resident population or as a measure of the population present. Ignoring the
distinction can lead to large errors where the two populations diverge, such as
in commercial districts or holiday destinations.

Integrated estimates of the usually-resident population and population present
would be a good candidate for a satellite account. Data sources for population
present often provide much less information on background characteristics, or
omit a larger fraction of the total population, than data sources for the usually-
resident population. Combining the two sorts of estimates, while allowing for
the differences in population definition, could help fill some of the gaps in the
information on population present. Publishing estimates of usually-resident
population alongside estimates of population present would also help clarify the
distinction between the two measures, and highlight areas or subpopulations
where the distinction is particularly important.

In principle, an account could be constructed that included stocks and flows
for the usually-resident population and population present. However, flows per
unit of time for population present can be orders of magnitude higher than those
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for usually-resident populations. The population of a commercial district, for
instance, can increase and then decrease by a factor of 10 or 20 during a single
day. Harmonising flows associated with population present with flows associated
with usual residence would be very difficult, without necessarily yielding many
new insights. It might be more productive to create a stocks-only account based
on the accounting identity of Equation (5.8) rather than the usual accounting
identity linking stocks to flows.

5.3.5 Families, households, and dwellings

Many data users need estimates, not just of individuals, but also of families,
households, and dwellings. Published estimates of individuals, families, house-
holds, and dwellings must be consistent. The minimal type of consistency is that
counts of individuals by family type or household type add up to totals in the
demographic account. A stronger form of consistency is that changes make de-
mographic sense, so that, for instance, a decline in fertility rates is accompanied
by a decline in the proportion of families containing children.

Traditionally, production of household and family statistics has relied heav-
ily on census data. Administrative data typically lack detailed information on
relations between family members. Using administrative data to place people
in households requires address data to be highly accurate and timely, which is
not always the case. A big potential advantage of administrative data, how-
ever, is that it is updated far more regularly than the census. Two possible
new products at the ONS have substantial potential for household and family
statistics. The first is the Census Data Asset, which will roll forward the 2021
Census population. The second is the Statistical Co-resident datasets, which
group co-residents based on administrative-based addresses. If these products
do go ahead, the DPM project team will investigate how they can be integrated
with demographic accounts.

5.4 Model checking

All statistical models are based on simplifications and approximations. Checking
that these simplifications and approximations are not having a material effect on
outcomes of interest is an essential part of a modelling workflow [Gelman et al.,
2020]. If a model is to be deployed within a production process, then model
checking needs to be carried out continuously, to detect changes in performance
due to, for instance, changes in the input data or changes in the real-world
system being modelled.

5.4.1 Priorities for checking

Some aspects of the DPM that are priorities for checking are as follows.
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Robustness to violations of assumptions about rates and inputs

We need to assess the performance of the DPM when assumptions about de-
mographic rates and about the input data are violated, including when rates
or inputs change but the model does not. Robustness is likely to vary across
data sources, data models, and components of the demographic account. We
also need to assess the extent to which standard model diagnostics such as
leave-one-out cross-validation [Vehtari et al., 2017] are able to detect these sorts
of changes. Analysis of robustness are well suited to simulation studies where
inputs and model specifications are systematically varied.

Reporting lags and sub-annual estimates

ONS has not previously produced sub-annual population estimates on an on-
going basis, and there is limited evidence about levels of accuracy and possible
biases. A potentially important source of error is lags between the time when
people change residence and the time when an address change is recorded in
an administrative system. Administrative data with lags could potentially give
a misleading impression of actual seasonal patterns. The strength of any such
effects is, however, unclear. Simulation studies could provide insights into the
plausible range. Empirical evidence on the size and prevalence of lags, such as
evidence derived from linked census and administrative data, would be helpful
in setting up simulation studies. Comparing administrative data against other
data sources, such as mobile phone data, that do not have reporting lags could
also be useful.

Sensitivity to specification of data models

Choosing appropriate specifications, including prior distributions, for data mod-
els can be challenging. Data models are therefore a high priority for sensitivity
tests and prior predictive checks [Gelman et al., 2020, Section 2.4]. If important
features of the DPM results vary under different, equally defensible, specifica-
tions, this should be reported in technical results.

5.4.2 Monitoring performance via forecasts

The DPM offers a novel possibility for monitoring performance. The basic
idea is illustrated in Figure 5.1. Each period, the DPM would be used to
forecast values for the input data in the next period. Once the actual values for
the input data become available, these would be compared with the forecasted
values. Analysts would then try to diagnose the reasons for any discrepancies
that could not be explained by chance alone. Possible reasons would include
errors in the input data, problems with the data model, and problems with the
system model. Any such diagnoses would ideally be informed by discussions
with data providers and with experts on demographic trends. Comparisons of
the forecast and actual data could also provide evidence on whether uncertainty
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measures from the DPM were appropriately calibrated—whether the DPM was
understating or overstating uncertainty.

θt θt+1

yt ỹt+1

(a) Time t

ỹt+1 yt+1

(b) Time t+ 1

Figure 5.1: Forecasting next period’s data to monitor performance. At time t, forecast
next period’s data ỹt+1. At time t+1, compare the forecasted data ỹt+1 with the actual
data yt+1.

The use of forecasts to monitor performance depends on having explicit
system and data models. It would not be possible in a conventional population
estimation system, where the analysis of demographic trends and data is done
in a less formal way.

Using forecasts to monitor performance has potential blind spots. It may, for
instance, be poorly suited to identifying persistent flaws, such as consistently
incorrect coverage rates, since these sorts of flaws do not necessarily reduce
the model’s ability to forecast the next period’s data. Moreover, even when a
discrepancy is discovered, diagnosing the reason for that discrepancy would often
be difficult, given the complexity of the DPM. It would be important to have
other methods for monitoring performance, such as coverage surveys (discussed
in Section 5.2.3) that have complementary strengths and weaknesses.

However, the forecasting approach does have two important strengths. The
first is that it is cheap to implement. Forecasting and the detection of discrep-
ancies can be done entirely with existing data, and can easily be automated.
The second is that it is hard to manipulate, assuming that the forecasts are car-
ried out and recorded before the data becomes available, so that retrospective
adjustment is ruled out. ONS might even consider making the forecasts, and
subsequent evaluations, public.
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Appendix A

Additional detail on
particle filters

A.1 Importance function

Our importance function is described in Figure A.1. The function assumes that

data sources can be ranked by overall reliability. We use y
(∗)
k to denote the value

from the most reliable data source available for index k, and use gstkk (· | ·) to

denote the likelihood for the data associated with y
(∗)
k . In k where a value for

y
(∗)
k is available, we use gstkk (· | ·) to perturb y

(∗)
k and use this perturbed value

as our estimate of xstkk . In k where no value for y
(∗)
k is available, we base the

proposal entirely on migration rates.
The algorithm makes use of the Skellam distribution. If U1 and U2 are

Poisson variates with parameters µ1 and µ2, then V = U1 − U2 is a Skellam
variate with parameters µ1, µ2. We in fact use a left-truncated Skellam distri-
bution, which we denote skeltr(µ1, µ2, n), where n is the lowest value that the
draws from the distribution can take. Similarly, we use poistr(λ, n) to denote a
left-truncated Poisson distribution.

Towards the end of the algorithm, when we split net migration into in-
migration and out-migration, we use a procedure that treats all components
symmetrically. We do this to avoid concentrating all variability into one ‘resid-
ual’ component.
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Input

x
stk(i)
k−1 Stock at end of triangle k − 1

ystk∗k Reported stock at end of triangle k (optional)

xbthk Count of births during triangle k

xdthk Count of deaths during triangle k

µbth
k , δbthk Expected value and dispersion for birth rate γbthk

µdth
k , δdthk Expected value and dispersion for death rate γdthk

µin
k , δ

in
k Expected value and dispersion for in-migration rate γink

µout
k , δoutk Expected value and dispersion for out-migration rate γoutk

gstkk (· | ·) Data model for stock data ystk∗k

Algorithm

1. Generate rates γ̃ink , γ̃ink , γ̃ink and γ̃outk by drawing from gamma distributions
with specified expected values and dispersions.

2. Generate stock at end of triangle x̃
stk(i)
k and net migration n

(i)
k

• If ystk∗k is available:

(a) Draw x̃
stk(i)
k ∼ gstkk (· | ystk∗k )

(b) Set n
(i)
k = x̃

stk(i)
k − xstk(i)k−1 + x

dth(i)
k

• Else:

(a) Set e
′(i)
k = max(x

stk(i)
k−1 /2, γ̃ink /4)

(b) Set lower bound n
∗(i)
k = xdthk − xstk(i)k−1

(c) Draw n
(i)
k ∼ skeltr(γ̃ink , γ̃

out
k e

′(i)
k , n

∗(i)
k )

(d) Set x̃
stk(i)
k = x

stk(i)
k−1 − x

dth(i)
k + n

(i)
k

3. Calculate exposure ek = (xstkk−1 + xstkk )/4.

Figure A.1: Algorithm for drawing from importance function q(x
(i)
k ,γ

(i)
k , | yk,xk−1),

k = 1, · · · ,K.

(continued on next page)
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(continued from previous page)

4. Split net migration n
(i)
k into in-migration x̃

in(i)
k and out-migration x̃

out(i)
k

(a) Set lower bound m
∗(i)
k = abs(n

(i)
k )

(b) Draw gross migration m
(i)
k ∼ poistr(γ̃ink + γ̃outk e

(i)
k ,m

∗(i)
k )

(c) If m
(i)
k is odd and n

(i)
k is even, or vice versa, set m

(i)
k = m

(i)
k + 1

(d) Set x̃
in(i)
k = (m

(i)
k + n

(i)
k )/2

(e) Set x̃
out(i)
k = (m

(i)
k − n

(i)
k )/2

Output

x̃
(i)
k Vector with elements x̃

stk(i)
k , xbthk , xdthk , x̃

in(i)
k , x̃

out(i)
k

γ̃
(i)
k Vector with elements γ̃bthk , γ̃dthk , γ̃

in(i)
k , γ̃

out(i)
k
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A.2 Transition function

We derive the transition function f(xk,γk | xk−1) from the system models de-
scribed in Section 2.4. We draw the elements of γk straight from their respective
gamma distributions. Conditional on demographic rates, xk depends on xk−1
via xstkk , so we have

p(xk | xk−1) = p(xstkk , xbthk , xdthk , xink , x
out
k | xstkk−1). (A.1)

We decompose the right hand side into four conditional probabilities,

p(xstkk , xbthk , xdthk , xink , x
out
k | xstkk−1) = p(xink | xstkk−1)

× p(xdthk , xoutk | xink , xstkk−1)

× p(xstkk | xdthk , xoutk , xink , x
stk
k−1)

× p(xbthk | xstkk , xdthk , xoutk , xink , x
stk
k−1)

(A.2)

The first of these conditional probabilities is easily calculated, using the fact
that our system model for in-migration does not include exposure,

p(xink ) = pois(xink | γink ). (A.3)

The second conditional probability is the most complicated. We first develop
an expression for the special case where γink , and hence xink , is 0, leaving only
p(xdthk , xoutk | xstkk−1). In this special case, stock xstkk−1 is subject to decrements via
two competing and independent risks: death and out-migration. For simplic-
ity, we treat everyone in xstkk−1 as being born exactly halfway through the year,
and therefore experiencing exactly 0.5 person-years within each Lexis triangle
if they neither die nor emigrate. Using standard methods for multiple decre-
ment processes (see for example Preston et al. [2001, ch. 4]), we can calculate
probabilities for the two possible ways of exiting, and the one possible way of
remaining in, the Lexis triangle,

Outcome Probability

Exit via death
γdth
k

γdth
k

+γout
k

(
1− e−

1
2
(γdth

k +γoutk )

)

Exit via out-migration
γout
k

γdth
k

+γout
k

(
1− e−

1
2
(γdth

k +γoutk )

)

Remain to end e−
1
2
(γdth

k +γout
k )

Let π denote a vector holding the three probabilities. Applying these probabil-
ities to everyone in xstkk−1 leads to

p(xdthk , xoutk | xstkk−1) = multinom((xdthk , xoutk , xstkk−1 − xdthk − xoutk ) | xstkk−1;π).
(A.4)

Incorporating in-migration into the calculations is potentially complicated,
given that immigrants arrive at different times and are therefore subject to
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different probabilities of exiting and remaining. We keep the calculations simple
by using a computational shortcut commonly used in population projections
[Preston et al., 2001, pp. 125-126]. We assume that half of all immigrants arrive
at the start, and are thus subject to the same risks as the initial population,
and that the remaining immigrants arrive at the end, and are thus subject to
zero risks. If the number of immigrants xink is even, we set

p(xdthk , xoutk | xink , xstkk−1) =

multinom((xdthk , xoutk , 12x
in
k + xstkk−1 − xdthk − xoutk ) | 12xink + xstkk−1;π). (A.5)

If the number of immigrants is odd, we average over the cases where the xink th
immigrant arrives at the start and end,

p(xdthk , xoutk | xink , xstkk−1) =

1
2multinom((xdthk , xoutk , 12x

in
k + 1

2 + xstkk−1 − xdthk − xoutk ) | 12xink + 1
2 + xstkk−1;π)

+ 1
2multinom((xdthk , xoutk , 12x

in
k − 1

2 +xstkk−1−xdthk −xoutk ) | 12xink − 1
2 +xstkk−1;π).

(A.6)

An alternative way to divide out immigrants would be to allocate them proba-
bilistically to the start and end. However, this would complicate the calculation
of p(xdthk , xoutk | xink , xstkk−1), since we would need to sum over all possible config-

urations for xink .
The third term on the right hand side of Equation (A.2) is equal to 1,

p(xstkk | xdthk , xoutk , xink , x
stk
k−1) = 1, (A.7)

since the quantities involved are related deterministically,

xstkk = xstkk−1 − xdthk + xink − xoutk . (A.8)

Births to a cohort have no effect on the size of that cohort, so the fourth
term on the right hand side of Equation (A.2) reduces to

p(xbthk | xstkk , xstkk−1) = pois(xbthk | γbthk ek). (A.9)

A.3 Algorithm for extending a series

Figure A.2 presents an algorithm for extending an existing series by making
draws from the filtering distribution.
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Input

{x(i)
K } N draws from the posterior distribution p(xK | y0:K)

f(xk | xk−1) Transition function

g(yk | xk) Likelihood

q(xk | yk,xk−1) Importance function

a Resampling threshold, 0 ≤ a ≤ 1

Algorithm

• For k = K + 1,K + 2

1. For i = 1, · · · , N
(a) Draw x̃

(i)
k ∼ q(xk | yk,x

(i)
k−1)

(b) Set x̃
(i)
K+1:k = (x

(i)
K+1:k−1, x̃

(i)
k )

(c) Calculate unnormalised weights

w̃
(i)
k =

g(yk | x̃(i)
k )f(x̃

(i)
k | x

(i)
k−1)

q(x̃
(i)
k | yk,x

(i)
k−1)

W
(i)
k−1

2. Calculate normalised weights W̃
(i)
k = w̃

(i)
k /

∑N
j=1 w̃

(j)
k

3. Calculate effective sample size N̂k = 1/
(∑N

i=1(W̃
(i)
k )2

)

4. If N̂k < aN or if k = K + 2 then resample, obtaining N particles

x
(i)
K+1:k with weights W

(i)
k = 1/N . Otherwise set x

(i)
K+1:k = x̃

(i)
K+1:k

with weights W
(i)
k = W̃

(i)
k .

Output

{x(i)
K+1:K+2} N draws from distribution p(xK+1:K+2 | x(i)

K ,yK+1:K+2)

Figure A.2: Particle filter for adding one extra period to an existing cohort.
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Appendix B

Example of TMB C++
template for estimating one
cohort

#include <TMB.hpp>

template<class Type>

Type objective_function<Type>::operator() ()

{

// input values

DATA_SCALAR(val_stk_init);

DATA_VECTOR(val_dth);

DATA_VECTOR(mean_dth);

DATA_VECTOR(mean_im);

DATA_VECTOR(mean_em);

DATA_SCALAR(sd_dth);

DATA_SCALAR(sd_im);

DATA_SCALAR(sd_em);

DATA_VECTOR(data_stk);

DATA_VECTOR(data_im);

DATA_VECTOR(data_em);

// parameters returned to R

PARAMETER_VECTOR(log_rate_dth);

PARAMETER_VECTOR(log_expect_im);

PARAMETER_VECTOR(log_rate_em);

PARAMETER_VECTOR(log_val_im);

PARAMETER_VECTOR(log_val_em);
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// quantities used in calculations

int K = val_dth.size();

vector<Type> val_im = exp(log_val_im);

vector<Type> val_em = exp(log_val_em);

vector<Type> val_stk(K);

// population accounting equation

val_stk[0] = val_stk_init - val_dth[0] + val_im[0] - val_em[0];

for (int k = 1; k < K; k++)

val_stk[k] = val_stk[k-1] - val_dth[k] + val_im[k] - val_em[k];

// exposure

vector<Type> exposure(K);

exposure[0] = 0.5 * (val_stk_init + val_stk[0]);

for (int k = 1; k < K; k++)

exposure[k] = 0.5 * (val_stk[k-1] + val_stk[k]);

// negative log posterior (= negative log likelihood + negative log prior)

Type ans = 0;

// contribution from rate_dth, expect_im, rate_em, including Jacobians

ans -= dnorm(log_rate_dth, mean_dth, sd_dth, true).sum() - log_rate_dth.sum();

ans -= dnorm(log_expect_im, mean_im, sd_im, true).sum() - log_expect_im.sum();

ans -= dnorm(log_rate_em, mean_em, sd_em, true).sum() - log_rate_em.sum();

// contribution from val_dth, val_im, val_em, including Jacobians

vector<Type> expect_dth = exp(log_rate_dth) * exposure;

vector<Type> expect_im = exp(log_expect_im);

vector<Type> expect_em = exp(log_rate_em) * exposure;

ans -= dpois(val_dth, expect_dth, true).sum();

ans -= dpois(val_im, expect_im, true).sum() + log_val_im.sum();

ans -= dpois(val_em, expect_em, true).sum() + log_val_em.sum();

// contribution from data

ans -= dpois(data_stk, val_stk, true).sum();

ans -= dpois(data_im, val_im, true).sum();

ans -= dpois(data_em, val_em, true).sum();

return ans;

}

61



Bibliography

Pete Benton, 2021. URL https://blog.ons.gov.uk/2021/07/13/

population-and-social-statistics-in-a-rapidly-changing-world/.

United Nations Population Division. Expert group meeting on
methods for the world population prospects 2021 and beyond,
2020. URL https://www.un.org/development/desa/pd/events/

expert-group-meeting-methods-world-population-prospects-2021-and-beyond.

John Bryant and Patrick Graham. Bayesian demographic accounts: Subnational
population estimation using multiple data sources. Bayesian Analysis, 8(3):
591–622, 2013.

John Bryant and Junni L Zhang. Bayesian Demographic Estimation and Fore-
casting. CRC Press, 2018.

John Bryant, Jenny Harlow, Junni L. Zhang, Charlotte Taglioni, and Feifei
Wang. demest: Bayesian Demographic Estimation and Forecasting, 2021. R
package version 0.0.0.5.4.

P.H. Rees. Regional Population Project Models and Accounting Methods. Jour-
nal of the Royal Statistical Society. Series A (General), 142(2):223–255, 1979.
ISSN 0035-9238.

R. Stone. The accounts of society. In Nobel Prize in Economics Documents.
Nobel Prize Committee, 1984.

Frans Willekens. Population Accounts, pages 29–40. Springer, 2011.

Ruth King, Byron Morgan, Olivier Gimenez, and Steve Brooks. Bayesian anal-
ysis for population ecology. CRC Press, 2009.

Mark C Wheldon, Adrian E Raftery, Samuel J Clark, and Patrick Gerland. Re-
constructing past populations with uncertainty from fragmentary data. Jour-
nal of the American Statistical Association, 108(501):96–110, 2013.

James Raymer, Arkadiusz Wísniowski, Jonathan J Forster, Peter WF Smith,
and Jakub Bijak. Integrated modeling of European migration. Journal of the
American Statistical Association, 108(503):801–819, 2013.

62



KB Newman, ST Buckland, BJT Morgan, R King, DL Borchers, DJ Cole, et al.
Modelling population dynamics: model formulation, fitting and assessment
using state-space methods. Springer, 2014.

Leontine Alkema, Doris Chou, Daniel Hogan, Sanqian Zhang, Ann-Beth Moller,
Alison Gemmill, Doris Ma Fat, Ties Boerma, Marleen Temmerman, Colin
Mathers, et al. Global, regional, and national levels and trends in maternal
mortality between 1990 and 2015, with scenario-based projections to 2030: a
systematic analysis by the UN Maternal Mortality Estimation Inter-Agency
Group. The Lancet, 387(10017):462–474, 2016.

Seth Flaxman, Swapnil Mishra, Axel Gandy, H Juliette T Unwin, Thomas A
Mellan, Helen Coupland, Charles Whittaker, Harrison Zhu, Tresnia Berah,
Jeffrey W Eaton, et al. Estimating the effects of non-pharmaceutical inter-
ventions on COVID-19 in Europe. Nature, 584(7820):257–261, 2020.
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