
Geospatial methods for Small Area Population Estimates: proof of 
concept 
 

Key asks 
1. Does the strategy for developing geospatial approaches for small area 

population estimation seem viable? 
2. Does the panel have any suggestions on other geospatial 

research/methods/data that we should be aware of? 
a. Does the panel have any thoughts on how we can best incorporate 

address occupancy into our model covariates? 
3. Are there any other applications the panel think may be suitable for the 

geospatial applications outlined in this paper? 

1. Introduc�on to Small Area Popula�on Es�ma�on 
This paper reports on an initial proof of concept exercise on the use of geospatial 
approaches for producing small area estimates of the household population in 
England and Wales. The Office for National Statistics (ONS) has well developed and 
documented methods for producing population estimates in England and Wales at 
local authority district (LAD) level (see below).  
 
There is also a strong user need for robust population estimates below LAD level, for 
instance Middle layer Super Output Areas (MSOAs), Lower layer Super Output 
Areas (LSOAs) and Output Areas (OAs). For example, local authorities and councils 
need population statistics at a local level so that they can understand their local 
communities and changes in those communities. This will enable them to make well 
informed decisions about local service provision and to target resources and 
interventions effectively. We at the ONS are investigating options for improving 
methods for small area population estimates (see our methodology article Small 
Area Population Estimates in the transformed population estimation system).   
 
One potential approach is to make use of geospatial methods and data sources. The 
essence of the geospatial approaches is to use data sources of a very high spatial 
resolution, capturing geographical, demographic and socio-economic data, that may 
indicate population size at small area level. For instance, use of satellite imagery to 
provide detailed classifications of land use and cover, or to produce fine-grained 
maps of night-time light radiance.  
 
In addition, record-level data sources can be used to identify “where things are”, for 
instance pin-pointing the locations of buildings to create a detailed picture of an 
areas building stock and footprint. This type of data can also pinpoint amenities that 
the population interact with, such as hospitals, schools, shops, and so on. The 
richness of this anonymised information may offer a unique insight into resolving 
some challenges for estimating small area populations in England and Wales. 
 

https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/methodologies/smallareapopulationestimatesinthetransformedpopulationestimationsystemmethodsdevelopment
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/methodologies/smallareapopulationestimatesinthetransformedpopulationestimationsystemmethodsdevelopment


Transformed popula�on system for England and Wales 
Geospatial approaches for small area population estimation contributes to the wider 
on-going ONS transformation of the population and migration statistics system for 
England and Wales (see our article on How population and migration estimates are 
evolving for more information). The transformation aims to make the most of several 
available data sources, focusing on administrative data to produce high quality 
population statistics.  
 
Methods such as the Dynamic Population Model (DPM) have been developed as a 
means to provide more frequent and timely population statistics that meets user 
needs. The DPM uses a model-based cohort component method incorporating 
multiple administrative and survey data sources, including Statistical Population 
Datasets (SPDs) as an admin-based population stock, information on births, deaths 
and migration, as well as census data (see our Dynamic population model, 
improvements to data sources and methodology article from December 2023).  
 
The DPM has produced high quality Admin-Based Population Estimates (ABPEs) at 
LAD level and we aim for these to become the official mid-year population estimates 
in 2025. We will gather feedback from users, including local authorities on the new 
approach in autumn 2024, so we can draw on local insight as we improve the 
estimates. This user feedback will form part of the criteria to support the decision on 
when the ABPEs will become the official mid-year population estimates. The DPM is 
not currently designed to produce estimates below LAD level, however. 
 
 
Current popula�on system for England and Wales 
Currently, a decennial census provides the most accurate population statistics at 
national and sub-national geographies in England and Wales including LAs, MSOAs, 
LSOAs and OAs. Between census years, mid-year estimates are produced using 
ratio change methods for MSOAs and LSOAs and apportionment methods for OAs.  

These methods roll forward census estimates using administrative data as a proxy 
for changes in the population (see our Methodology note on production of population 
estimates for details on the ratio change and apportionment methods). While these 
methods produce, on average, respectable measures of bias against known 
population counts, there are issues with several small areas having much larger bias 
(see our Small Area Population Estimates in the transformed population estimation 
system methodology article). Estimates from ratio change and apportionment are 
also prone to “drift” over the decade between census years, meaning small area 
population estimates become less accurate the further away from the previous 
census year. This drift is highlighted in our Rebasing of mid-year population 
estimates following Census 2021, England and Wales bulletin.   

 

We think the geospatial approach shows good potential as an alternative as it relates 
information about the infrastructure on the ground to population density and does not 
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necessarily rely on the census. Geospatial information is also available at more 
frequent time points across the decade, potentially helping to minimise the “drift” of 
population estimates the further away from the census year. 

 

2. Geospa�al methods and data 
Geospatial approaches for small area estimation make use of rich, spatially refined 
data sources that potentially offer a unique insight into understanding the make-up 
and dynamics of the population. For example, approaches such as Population 24/7 
demonstrate how geospatial data can be used to understand how the population of 
an area changes throughout a day, for more details see the Developing a flexible 
framework for spatiotemporal population modelling article, published in the Taylor 
and Francis online journal. In a similar manner, this paper considers using geospatial 
information to produce small area population counts of the population, as shown in 
our United Kingdom population mid-year estimate time series. 

Typically, geospatial data are used in two types of methodology to produce 
population estimates for small areas: “bottom-up” modelling and “top-down” 
disaggregation. A detailed review of these methods can be found in the Spatially 
disaggregated population estimates in the absence of national population and 
housing census data article, published in the PNAS online journal. 

Top-down approaches, or disaggregation methods, take known population totals at 
higher levels of geography and disaggregate these to more granular levels of 
geography. Geospatial information captured at the small area level is used to inform 
this disaggregation. Several disaggregation methods exist (see the Disaggregating 
population data article, published in the Taylor and Francis online journal for a 
detailed overview). One approach is to use a random forest dasymetric mapping 
method as developed by WorldPop. The method is built from random forest 
algorithms that model the relationship between the population and geospatial 
information at a level of geography where the population estimate is of sufficient 
quality (for example, LAD level).  

The algorithm, which offers relatively good predictive performance from minimal 
model tuning, as explained in the Disaggregating Census Data for Population 
Mapping Using Random Forests with Remotely-Sensed and Ancillary Data article 
published in the Plos One online journal, then uses geospatial information at small 
area geographies to make a population prediction for these small areas. The 
predictions at small area level are then used as a weighting layer to redistribute the 
higher-level (LAD) population totals. The outcome is a set of small area population 
counts that are calibrated to a high-quality population benchmark at higher levels of 
geography.  

The random forest disaggregation approach assumes that the relationships between 
population and geospatial data at the aggregated (LAD) level are similar to the 
relationships at the disaggregated (LSOA) level. Furthermore, the random forest 
method is not able to extrapolate, or predict, beyond the limits of the data set in the 
training model. Consequently, we are likely to expect poorer predictions at the 
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extreme ends of the population density distribution at LSOA level, owing to the vastly 
different spatial scales from LAD to LSOA level.  

In contrast, bottom-up methods focus on the relationships between population and 
geospatial information at or below the level of geography of interest. Of course, the 
challenge with this approach is deriving population data at the small area of interest 
to use in fitting, or training, the models. Conventional bottom-up approaches tend to 
make use of data sources capturing the population for a smaller number of areas, 
typically measured from a survey. The relationships between the small area 
population and geospatial information for the sampled areas is used to then make a 
population prediction for the “out-of-sample” areas. 

The critical challenge for the bottom-up methods is access to a quality, small scale 
survey from which population estimates can be derived for a selection of areas 
across England and Wales. An alternative would be to consider the most recent 
census to provide the population data at small area level. In this approach, 
geospatial data are modelled against the census data at the census reference point 
(March 2021). Geospatial data from later time points can then be used to predict 
population for time points in non-census years. This approach assumes that the 
relationships between the population and geospatial data at the census reference 
point are maintained over time. In general, this is more likely to hold true when 
estimating closer to the census. However, the 2021 Census was taken during the 
coronavirus (COVID-19) pandemic lockdown conditions, so the relationships 
identified at that time may not be fully representative of those when lockdown 
conditions had ended.  

A final consideration for the bottom-up modelling approach is the geographical level 
to model at. One option is to use geospatial data derived directly at the small area 
level of interest, such as LSOAs. However, an alternative option explored in this 
paper was to make use of geospatial information at very fine-grained levels of 
geography, specifically grid squares. In the geospatial literature, data are 
summarised at grid squares, typically between 100m to 1km squared, with all grids 
being of equal size. Gridding geospatial information is expected to better capture the 
properties of geospatial data, allowing for more robust relationships between 
geospatial information and population to be established (see the Disaggregating 
population data for assessing progress of SDGs: methods and applications article, 
published in the Taylor and Francis online journal for more detail).  

In contrast, administrative/statistical boundaries, for example OAs, LSOAs and 
MSOAs, are based on population size rather than physical size (see our Census 
2021 geographies methodology). At these boundaries, the physical size of areas will 
vary and are much larger than the typical grid area used for population estimation. 
Summarising geospatial data at these levels of geography may not capture the detail 
in the geospatial data and risk the granular nuances being averaged out. 

In this paper we explore three approaches to estimating the household population – 
one top-down approach and two bottom-up approaches: 
1. A top-down approach to disaggregate the LAD census population to LSOA level. 

https://www.tandfonline.com/doi/full/10.1080/17538947.2021.2013553
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2. Use geospatial data at LSOA level to directly estimate at this level 

3. Use gridded geospatial information to produce 100m square population estimates, 
which are aggregated up to LSOA level.   

 

We outline our approach in more detail in Section 3: Strategy. In Section 4: Methods 
and models, we describe the different top-down and bottom-up approaches in more 
detail. Section 5: Quality Measurement and validation, outlines our approach for 
measuring the bias of the population estimates as compared with the 2021 Census. 
Results from each method are presented in sections 6: Top-down results, 7: Bottom-
up results at LSOA level, and 8: Bottom-up results at Grid level. Section 9: 
Discussion, and Section 10: Future recommendations, overviews the paper and 
provides an outline of next steps. 

3. Strategy 
Census data as a “source of truth” 
For this proof-of-concept exercise, we make use of the 2021 Census population data 
to provide known population totals at LAD level to constrain estimates to. We also 
use the known census population estimates at LSOA level as a comparator for the 
small area estimates obtained from the geospatial models to calculate bias and 
assess the performance of the methods. The 2021 Census is used as a measure of 
the “true” population totals. 

Crucially, we only counted the census population that, as of the census reference 
date, were living in households and not communal establishments. We did this 
because the geospatial covariates, outlined later, largely capture the population living 
in households. Consequently, attempting to estimate the communal establishment 
population with the currently available covariates will likely lead to less accurate 
estimates. Consequently, this paper focuses on modelling the population living in 
households only. Future work will consider approaches for estimating both the 
household and communal establishment population separately, in a similar manner 
to how the mid-year population statistics are estimated. For more details, see our 
Population estimates for England and Wales, mid-2023: methods guide. 

 

Geospa�al and covariate data sources 
A variety of geospatial and administrative data sources were acquired to provide 
covariate information at LAD, LSOA and grid level. The following geospatial data 
sources were considered: 

• ESRI’s 10m land cover classification from sentinel-2 satellite imagery, 
measured at the mid-year for 2021 

• ESRI’s 500m night-time lights radiation from sentinel-2 satellite imagery, 
measured at the mid-year for 2021 

• The Met Office’s 1km climate variables, including sunlight, rainfall, wind 
speed, humidity, plus others, annual measures for 2021 

https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/methodologies/populationestimatesforenglandandwalesmid2022methodsguide
https://livingatlas.arcgis.com/landcover/
https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/imagery/earth-by-night/
https://www.metoffice.gov.uk/research/climate/maps-and-data/data/haduk-grid/haduk-grid#:%7E:text=HadUK%2DGrid%20is%20a%20collection,consistent%20coverage%20across%20the%20UK.


• DEFRA’s 1km air quality variables, including particulate matter, sulphur 
dioxide, nitrous (di)oxide, plus others, annual measures for 2021 

• DEFRA's 50m risk of flooding from rivers and seas for England and Wales, 
measured as of November 2023 

• Ordnance Survey’s 50m terrain height points, measured as of November 
2023 

 

The quality of these data sources was assessed by acquiring metadata for each 
source, to understand how the data were collected and processed. Assessment of 
metadata and inspecting the data allowed us to confirm these sources were of 
sufficient quality for inclusion in this paper. Other sources, where we were not 
satisfied in either the way data were collected or processed, that compromised the 
accuracy and intent of what these sources were meant to measure, were not 
included. 

We also examined the data sources with regards to how we expected the data to 
correspond to population in England and Wales. For instance, land cover 
classification contains 10-metre grids that identify “built-up” areas. This includes 
residential properties, but also non-residential properties, travel networks, industrial 
sites, and so on. Similarly, night-time lights radiance does not solely reflect the 
residential population at night, but will capture non-residential areas including non-
residential buildings, air and ferry ports, and so on. Using only open-source data to 
predict the residential population across and England and Wales would likely to lead 
to very inaccurate estimates. 

We also considered several other geospatial data sources, a mixture of open-source 
and those available to ONS, derived only at LAD and LSOA level, which we believe 
relate to the residential population at these levels: 

• Anonymised and aggregated mobile network operator travel and location 
dataset – providing hourly population estimates used to estimate residential 
population and changes in population over time, at high spatial and temporal 
resolution 

• the Open Street Map (OSM) – an open dataset used to derive measures of 
street network design that provide the framework for residential development; 
this provides counts of network nodes (intersections) and edges (streets) for 
both the entire network and residential streets, and could be substituted with 
similar data from Ordnance Survey 

• the Rural-Urban Classification dataset – providing an LSOA level 
categorisation of rural and urban areas used to test whether different 
relationships exist between population and input covariates in different area 
types 

The approach we took in this paper was not to rely just on typical geospatial data, 
but to also make use of administrative data sources available in the ONS that 
provide more direct counts of the population and housing than open-source 
geospatial data would, but do not provide sufficiently accurate distributions at small 

https://uk-air.defra.gov.uk/data/pcm-data
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area level alone. For example, administrative datasets are designed for 
administrative purposes rather than population estimation. However, the approach 
outlined in this paper aims to combine the strengths of various types of data to 
produce small area population estimates. 

The administrative data sources provide records of information alongside the 
coordinates of where those records are located, meaning we could summarise these 
data sources at grid, LSOA and LAD levels of geography. The following data sources 
were considered: 

• the ONS-derived dataset, Address Index, which integrates Ordnance Survey 
AddressBase Premium, Royal Mail Postcode Address File, and LAD 
gazetteers to provide a list of addressable objects across the country, which is 
used to provide residential addresses, points of interest (hospitals, schools, 
etc) and types of land (crops, parks, water, etc) 

• the Valuation Office Agency (VOA), which provides characteristics about 
residential addresses, including total floor area, number of rooms, number of 
bedrooms 

The Address Index aims to provide an accurate and comprehensive list of 
addressable objects across the country, using reliable data sources from the 
Ordnance Survey AddressBase, the Royal Mail Postcode Address File, and LAD 
level address information. As a single framework to capture addresses across the 
UK, Address Index can be used for many applications requiring accurate address 
data, including being used as an address framework for the 2021 Census. The 
quality of the Address Index is maintained with regular data supplies every 6 weeks, 
providing a timely source of data from which to base address data. 

The comprehensive nature of the Address Index means we can link in other 
information about addresses using Unique Property Reference Numbers (UPRNs). 
One data source considered in this paper is data on address characteristics provided 
by the Valuation Office Agency (VOA). VOA was used in the 2021 Census to provide 
information on the number of rooms for households. However, VOA data does have 
some missing values after linking to Address Index data, around 5 to 6% for the 
number of rooms, number of bedrooms and floor area variables. In the census, 
missing values were addressed with robust imputation methods. Future work could 
consider similar methods to ensure these missing values are handled when linked to 
the Address Index. 

Future work can consider using an SPD data source, in combination with address 
data that will give us information on the number of occupied addresses across 
England and Wales. Similar outputs on occupied addresses have been produced 
before with our Admin-Based Housing Stock (ABHS) dataset, though these data 
have only been produced for 2021 using older versions of the SPD. Providing such 
data on occupied addresses will, however, likely provide a useful variable for 
estimating the residential populations across England and Wales. 

 

https://www.ons.gov.uk/methodology/methodologicalpublications/generalmethodology/onsworkingpaperseries/onsworkingpaperseriesno17usingdatasciencefortheaddressmatchingservice
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4. Methods and models 
Top-down LAD to LSOA disaggrega�on 
For this application, we modelled the relationship between covariate data and LAD 
level population living in households to estimate LSOA level population, using a 
random forest model. The models were trained on all LADs in England and Wales 
using 2021 Census population and covariate data. The coefficients from the model 
were used to predict population for all LSOAs in England and Wales, using 
corresponding covariate data. This approach is relevant for prediction of small area 
population, where population estimates for non-census years are only available at 
higher levels of geography.  

Similar to the WorldPop approach, model estimates were in the form of the natural 
log population density at LSOA level, as population density is more consistent across 
different spatial scales than population counts. The logarithm transformation 
reshapes the response variable as a Gaussian distribution, which matches better 
with the distributions of covariates. The distributions of count-based input covariates, 
such as total residential address density, were also non-Gaussian. Therefore, we 
used the natural log of count-based input covariates for consistency.  

The population density estimates at LSOA level were used to estimate an indicative 
population count. A weighting factor for each LSOA was derived from the ratio of this 
count to the sum of these counts across each LAD. The known LAD level population 
counts were then disaggregated using the weights to provide the final constrained 
population count estimates at the LSOA level. These estimates were then compared 
with the 2021 Census population living in households estimate as a “source of truth” 
(see Section 5: Quality measurement and validation). 

We first developed a model using covariates detailed in the random forest 
dasymetric mapping method as developed by WorldPop. This provided a baseline for 
comparison against models developed using other geospatial covariates listed 
above. For consistency, between the three modelling approaches outlined in this 
paper, a subset of geospatial covariates was selected and used for each model 
approach, based on the strength of relationship measured by Pearson’s correlation 
(see Table 1). Further discussion on the findings from model exploration using 
alternative covariates is included in the discussion section.  

For each model, we used the following covariates: 

• Address Index residential address density 
• Total Valuation Office Agency (VOA) floor area 
• VOA number of beds density 
• VOA number of rooms density  
• ESRI night-time lights (VIIRS) intensity 
• UK AIR particular matter (2.5g) concentration 
• UK AIR number of days that maximum 8-hr ozone concentration is greater 

than 120 micrograms per cubic metre  
• UK AIR nitrous oxide concentration micrograms per cubic metre 

https://www.worldpop.org/wp-content/uploads/2022/10/top-down-tutorial.html
https://www.worldpop.org/wp-content/uploads/2022/10/top-down-tutorial.html


 

These covariates were shown to have the strongest relationships to the census 
population living in households, of the covariates that were available at LAD, LSOA 
and grid level. Although other covariates such as from anonymised and aggregated 
mobile network operator data were also strongly correlated with residential 
population, as this covariate was not available at grid level, this was not used in the 
models reported here. 

Botom-up model at LSOA level 
For this application, we modelled the relationship between covariate data and LSOA 
level population living in households, using a random forest model. The models were 
trained on a randomly selected sample of LSOAs, with this model predicting 
populations for the remaining “out-of-sample” LSOAs. We only predict population for 
these “out-of-sample” LSOAs to avoid over-fitting of the model for validation 
purposes.  

In this application, we randomly sampled 30% of LSOAs for the training data. We 
experimented with smaller samples, which may be more representative of typical 
survey sample sizes. Further discussion on the effects of sampling size is provided 
in the discussion section.  

The covariates were modelled against the log population density at LSOA level (the 
same as for the top-down approach). To derive LSOA level estimates for the “out-of-
sample” LSOAs, the population density estimates were used to estimate an 
indicative population count. Because of withholding the training data from the 
predictions, weighting factors were then derived from the ratio of these counts to 
their sum across the remaining “out-of-sample” LSOAs within each LAD, to constrain 
the known LAD level population counts to component LSOAs.  

Botom-up model at grid level 
The appeal of using gridded data is that the properties of the geospatial information 
may be better captured at fine-grained levels of geography, for instance 100m 
square grids. Table 1 shows the strength of relationships between population and 
geospatial data are quite similar across LAD, LSOA and grid level (particularly when 
using population density at LAD and LSOA level). However, the potential benefit of 
modelling at grid level may come from nuances in the data being better captured, 
rather than at aggregated levels where such nuances may be lost in the aggregation 
process.  

 

Table 1: Correlation coefficients between geospatial covariates and 2021 Census 
population at LAD, LSOA and grid level 

Geography Address 
Index 
address 
density 

Address 
Index 
floor 
area 
density 

Address 
Index 
bedroom 
density 

Address 
Index 
room 
density 

UKAIR pm2 
concentration 

UKAIR 
nitrous oxide 
concentration 

UKAIR 
ozone 
concentration 

ESRI 
night-
time 
lights 
radiance 



Grid 
population 
density 

0.89 0.96 0.96 0.94 0.37 0.46 0.29 0.61 

LSOA 
population 
density 

0.92 0.92 0.95 0.95 0.95 0.86 0.67 0.89 

LAD 
population 
density 

0.98 0.98 0.98 0.99 0.46 0.32 0.32 0.39 

 

Using gridded geospatial data, we modelled the relationship between the same 
covariates used in the other models with census population living in households, 
using a random forest model. As the amount of data fed into these models was 
substantially increased because we were modelling at 100m grid level, for 
computational reasons we ran the same random forest model but for each of the 9 
English regions and Wales separately.  

For each model, we again took a random 30% sample of grid cells to train the 
random forest model on, with predictions made for the remaining 70% of grids. For 
almost all regions, every LSOA was represented by having at least one grid square 
in the training and test data. For London, only one LSOA (Croydon 046A) did not 
have a grid square in the 70% test data, meaning no estimate was produced for this 
LSOA. 

As 100m grid squares are equivalent to 1 hectare, population count is equivalent to 
population density, as used in the other model applications. The models used the log 
of the census population count as our dependent variable, with the exponential of the 
predictions giving us a population count estimate at 100m grid level. Like the other 
modelling approaches, grid estimates were used as weighting factors, derived from 
the sum of component 100m grid census population within each LAD, to 
disaggregate the known LAD level population counts to component 100m grids. 
Because the training data is withheld from the predictions, the disaggregation of the 
total population counts is from the sum of the remaining 100m grid census 
population counts (rather than the LAD total population). 

 

We then aggregated the 100m grid cell population predictions to LSOA level. In most 
cases, 100m grids fitted wholly within an LSOA boundary. However, a small number 
of grids overlapped at least two LSOA boundaries. For this paper, we decided to split 
the 100m grid estimate into overlapping LSOAs based on the amount of space that 
each grid lay within the respective LSOA boundaries. For example, if a grid had 60% 
of its area in one LSOA and 40% in another, then the grid level estimates was split 
60/40, respectively. This method produced a set of LSOA estimates that were 
compared with the 2021 Census population living in households estimates at LSOA 
level. 

 



5. Quality measurement and valida�on 
To assess the quality of LSOA level modelled estimates for each of the three 
approaches outlined above, we compared LSOA count estimates with Census 2021 
count of residents living in households by calculating the Absolute Relative Bias 
(ARB) for each LSOA in England and Wales, which is defined as the absolute value 
of: 

                   100*[(estimate-true value)/true value] 

From the LSOA level ARB measures, we take the median, 25th and 75th quantiles, 
and minimum and maximum ARB value to summarise overall performance of each 
method. We also conducted a deep dive into the twenty LSOAs with highest bias to 
understand characteristics of these areas to provide an understanding as to why 
these areas had extreme estimates. Table 2 (shown in Section 8: Results: Bottom-up 
model at Grid level) summarises the ARB measures across all four methods 
presented in this paper. 

 

6. Results from top-down LAD to LSOA disaggrega�on  
Random forest models can provide a measure of the relative importance of each 
input variable, or “feature”, to the construction of the model. This “feature 
importance” (measured by the mean decrease in impurity) enables an approximate 
ranking of which covariates are given the most importance during the training of the 
model. Of the geospatial covariates used in this modelling application, covariates 
relating to residential buildings were by far the most important. Bedroom density had 
the highest feature importance, followed by residential address density, floor area 
and room density, respectively. Night-time lights and covariates relating to pollution, 
had only marginal importance.  

When plotting model predictions against the Census 2021 population (see Figure 1), 
extrapolation issues inherent in random forest models were evident. Within the range 
of LAD level population density, predictions aligned reasonably well with 2021 
Census population density. However, at the extreme ends of the population density 
distribution, low densities were overestimated, and high densities underestimated – 
predictions were stacked at the upper and lower limit of LAD level population density 
values. There was also a general pattern of increased residuals at higher population 
densities. 



 
 

The median ARB for the top-down method was 8.21%, the ARB at the 25th quantile 
was 3.80% and at the 75th quantile was 14.90%. The maximum ARB was 781.62%, 
with 126 LSOAs having an ARB of over 100%. The majority of LSOAs (34,643 out of 
35,672) had an ARB value less than 40%. The 20 LSOAs with the highest bias all 
had positive bias values, meaning that they were overestimates of the LSOA 
population.   

There are differences in ARB values by region and area types. London was an 
outlier with a median ARB of 14.63%. Urban areas had higher median ARB values, 
but this is likely distorted by London LSOAs.  

The very large ARB measures were likely because of the extrapolation issues 
inherent in the random forest model for this application. To overcome this, we 
experimented with a hybrid top-down modelling approach where 32 LSOAs, with 
population densities outside of the dynamic range of that from the LAs, were 
combined with the LAD data to form the training dataset.  

With the hybrid approach, there was a reordering of feature importance, although 
address-based measures remain dominant. There was also a small increase in the 



relative importance of the night-time light covariate. The stacking of population 
density predictions at the upper and lower limit of LAD level population density 
values was removed by adding a small sample of LSOAs (see Figure 2), but the 
general pattern of increased residuals at higher population densities remained.  

 

 
 

 

The median ARB for the random forest top-down hybrid method was 7.84%, the ARB 
at the 25th quantile was 3.63% and the 75th quantile was 14.01%. The maximum 
ARB was 251.81%, with 48 LSOAs having an ARB of over 100%. The majority of 
LSOAs (35,036 of 35,672) had an ARB value less than 40%. The 20 LSOAs with the 
highest bias all had positive bias values, meaning they overestimated the LSOA 
population.  

The hybrid method produced similar results to the LAD top-down method as LSOAs 
in major cities in England and Wales, including London, were the LSOAs with the 
highest bias. Rural LSOAs were estimated with smaller levels of bias, with a median 
ARB for rural LSOAs of 6.90%, compared with an urban median ARB of 8.50%. As in 



the LAD trained model, London LSOAs were again outliers, but the median ARB 
dropped to 12.78%. The characteristics of the LSOAs with the highest bias include 
built-up areas with large numbers of shared houses and flats, with most households 
containing 1 to 2 individuals.   

 

7. Results from botom-up model at LSOA level 
Of the geospatial covariates used in this modelling application, covariates relating to 
residential buildings were by far the most important. Bedroom density had by far the 
highest feature importance, followed by room density and address density. Floor 
area, night-time lights and covariates relating to pollution, had only marginal 
importance.  

When plotting model LSOA counts against the Census 2021 density (see Figure 3), 
we see the model predicts the Census 2021 population generally well. The general 
pattern of increased residuals at higher population densities remains but was 
reduced. 

 



The median ARB for the LSOA level method trained on 30% of the LSOAs was 
6.24%, the ARB at the 25th quantile was 2.89% and at the 75th quantile was 
11.20%. The maximum ARB was 230.13%, with 28 LSOAs having an ARB of over 
100%. The majority of LSOAs (24,716 of 24,971) had an ARB value less than 40%. 
The 20 LSOAs with the highest bias all have positive bias values, meaning they 
overestimated the LSOA population.  

As with the previous model application presented, there were differences in ARB 
values by region and area types. London was again an outlier, but the median ARB 
dropped further to 8.86%, while other regions were in the range of 5.38% to 6.42%.   

We again see the pattern of the LSOAs with the highest bias located in London or 
major cities in England and Wales with high population densities, with rural LSOAs 
being estimated more accurately than urban LSOAs. Again, LSOAs with larger bias 
were characterised by large numbers of flats and shared houses, with most 
households containing 1 to 2 individuals in these LSOAs.   

8. Results from botom-up model at grid level  
Population predictions at grid level, generally, were close to the grid-level census 
population living in households. Of the 1,285,306 grids with a modelled estimate, 
96% (1,236,695) were within 20 people of the known census grid count living in 
households (see Figure 4, note that for illustrative purposes, any grid with a 
difference greater than -20 or 20 were grouped into the -20/20 band respectively). 
Only 6,469 grids had a modelled estimate that was greater than 50 people different 
from the true census grid count. It is important to acknowledge that some grid 
estimates were extremely different from the known census count, the maximum 
difference being 786 (grid underestimating the known population count). Generally, 
the more extreme grid-level estimates tended to underestimate the known population 
count, 1,038 grids had an estimate that was at least 100 people lower than the 
census grid count, with some grids predicting extremely small (fewer than 5 people) 
in areas where there were hundreds of usual residents living in households, 
according to the census. On the other hand, 321 grids had an estimate that was at 
least 100 people more than the census grid count. 

Of the 20 grids with the largest underestimation from the known census population, 
most grids were in London LSOAs, with one grid in Manchester. All grids show that 
the known census resident count outnumbered the number of addresses, implying 
these addresses were, as of the 2021 Census reference data, over-occupied at grid 
level. 

For the 20 grids with the largest overestimation from the known census population, 
most of these were in London LSOAs, although some grids were located across the 
country, including Basildon, Leeds, Nottingham, and Ipswich. A common feature was 
that grids contained tower blocks of flats, with the census data indicating these grids 
had lower levels of address occupancy than models predicted. 



 
As mentioned, random forest models were run at 100m grid level, separately for 
each English region and Wales. For six of the models (North East, North West, East 
Midlands, West Midlands, London and South East), bedroom and room density were 
the most important covariates, surprisingly total address and floor area had minimal 
importance alongside the night-time lights and air quality covariates. The other 
regions (Yorkshire, East of England, South West and Wales) showed only the room 
density variable having strongest importance. 

At the LSOA level, the median ARB was 6.24%, the ARB at the 25th quantile was 
2.89% and at the 75th quantile was 11.23%. The maximum ARB was 189.2%, with 8 
LSOAs having an ARB of over 100%. The majority of LSOAs (35,421 out of 35,671) 
had an ARB value less than 40%. The 20 LSOAs with the highest bias are a mix of 
positive and negative bias values, meaning some LSOAs are overestimated while 
others are underestimated.  

The estimates produced by this model follow the pattern of the LSOAs with the 
highest bias located in major cities with high population densities in England and 
Wales. London continued to be an outlier with a median ARB value of 8.26% 
compared with other regions ranging between 5.18% and 6.69%. Rural LSOAs are 
generally estimated more accurately than urban LSOAs. The LSOAs with high bias 
were characterised as built-up areas, with most households containing 1 to 2 
individuals and large numbers of dwellings classified as flats or shared houses. 



 

Table 2: Comparison of LSOA ARB measures against the 2021 Census for all 4 
models 

Model Minimum 25th quantile Median 75th quantile Maximum 
Top-down 
original 

0 3.80 8.21 14.90 781.62 

Top-down 
hybrid 

0 3.63 7.84 14.01 251.81 

Bottom-up 
LSOA 

0 2.89 6.24 11.22 230.13 

Bottom-up 
grid 

0 2.88 6.24 11.23 189.24 

  

9. Summary and discussion of methods 
This paper has presented an initial proof of concept into the use of geospatial data 
and methods to produce small area population estimates for England and Wales. We 
have presented three models. 

1. A top-down model to disaggregate LAD 2021 Census population living in 
households to LSOA level. 

2. A bottom-up model predicting population living in households directly at LSOA 
level. 

3. A bottom-up model predicting population living in households at grid level, 
then aggregated to LSOA level.  

Across the three methods, median ARB measures ranged from 6% to 8%, which, at 
present, are not obviously better than those achieved using our current "baseline" 
methods (ratio change and benchmarking) described in our methodology article 
Small Area Population Estimates in the transformed population estimation system). It 
is important to stress that direct comparisons of bias are complicated by the different 
nature of the applications.  

Baseline methods, such as the ratio change method, take the census as a base and 
roll the estimates forward each year, using the change in the population recorded in 
administrative sources for consecutive years as an indicator of change in the true 
population. On the other hand, the geospatial approaches outlined in this paper have 
not used a direct admin count of the population in the initial application: the focus 
here has been to assess the potential of the geospatial data in informing the small 
area distribution of the population.  

This paper has demonstrated the potential for using geospatial sources to produce 
small area population estimates. There is potential to improve the geospatial models 
in future applications by improving the covariate data and trying alternative modelling 
approaches (please find more detail in Section 10: Future direction). An important 
part of this is to optimise the covariate selection and model fit and to include 
covariate data that represents the population in communal establishments in addition 
to the household populations.  



We can also investigate whether the geospatial data can be used to supplement the 
distributions from the SPD, particularly in areas where the SPD data are not robust. 
A first step will be to do a more direct comparison of the estimates obtained using 
geospatial and baseline methods, particularly comparing the characteristics of the 
outlying areas with higher bias. In the longer term, a future aim could be to 
investigate the use of geospatial models for population estimates by age and sex 
and possibly other characteristics. 

The top-down approach taken in this paper was inspired by the approach taken by 
WorldPop; a random forest model trained at LAD level was used to predict the 
population at LSOA level. We initially replicated the WorldPop method directly, using 
geospatial covariates used in this WorldPop top-down demonstration.  

Disaggregating Census 2021 population data using these covariates produced 
poorer quality population estimates at LSOA level, with a median ARB of 40% and a 
maximum ARB of 1,980%. Using covariates developed for this paper improved the 
models, however we highlighted an important issue in that the random forest model 
could not extrapolate predicted population density values at the LSOA level beyond 
the range between the minimum and maximum population density observed at the 
LAD level.  

This becomes an issue where there are differences in the range and distribution of 
input data. In this implementation of the modelling approach, this results in poor 
predictions at the upper and lower limits of population density because of the 
differences in the response variable and input covariates at different spatial scales, 
that is, i.e., population density and factors of influence of population density will be 
expected to be observed at much higher values at LSOA level than at LAD level. To 
better understand the impact of this issue and how it could be addressed, we have 
demonstrated a hybrid training approach with a small sample of LSOAs added to the 
training set, which removes this extrapolation issue and improves ARB values, 
particularly by reducing maximum ARBs.  

However, this basic solution would not be advised in practice, because of leakage 
between the training data and the model evaluation predicted populations. 
Alternatively, a better approach would be to include synthetic data in the training data 
that represent the relationship between covariates and population density beyond 
that possible at LAD, but without including actual LSOA data points.  

The top-down model as presented uses a common set of geospatial covariates that 
are available for each of the three different modelling approaches. We experimented 
with additional covariates, including average night-time population from anonymised 
and aggregated mobile network operator data, street network design derived from 
Open Street Map, and area classifications. Combinations of these covariates 
improve the model performance over the common set presented in this paper. Using 
the LAD trained approach, median ARB values are reduced to 6.9%, although 
maximum ARB values are not improved because of the previously mentioned issues 
with extrapolation. 

https://www.worldpop.org/wp-content/uploads/2022/10/top-down-tutorial.html


Using the hybrid approach alongside these additional covariates, median ARB 
values are reduced to around 6.5% and maximum ARB values to as low as below 
150%, although these values were achieved using different combinations of 
covariates. In models trained with these additional covariates, those derived from 
anonymised and aggregated mobile network operator data have the highest feature 
importance, however, these data come with certain caveats. Firstly, the data are 
weighted to census population to account for market share of the data provider.  

This process aims to produce a dataset that is representative of the population, 
rather than of the data providers customer base. In addition, as the data are 
weighted to the Census population, there are circularity issues of using population 
data to estimate the population. Secondly, the data are adjusted at source to ensure 
issues of disclosure control are removed from the data and no individuals can be 
identified. As the data are provided at fine spatial granularity, this results in issues 
with aggregation, i.e., where records have been removed because of disclosure 
control, aggregated totals may contain discrepancies. A better understanding of the 
methodology used in the production of the data is required, working with the data 
providers to assess its suitability for generating population statistics. When 
anonymised and aggregated mobile network operator data is removed from models, 
residential address density measures become dominant. 

As an alternative approach, we considered ‘bottom-up’ models where we model the 
LSOA population directly at this level. The LSOA level model application shows 
improvements over the LAD trained model. This is to be expected as because the 
models are trained on LSOAs, issues of extrapolation outside the range of LAD 
population density are removed. It is important to reiterate that these different 
applications are designed for different situations of known population statistics.  

The LAD trained model is suitable where population is only known or estimated at 
the LAD level, while the LSOA trained model is more suited where there is a sample 
survey of population. In the latter example, it is more likely that a smaller than 30% 
sample would be available. We therefore also experimented with smaller samples 
which may be more realistic to a potential future data collection designed to sample 
a smaller number of areas.  

The distribution of predicted population density is very similar whether trained using 
5 (median equals 6.68%, maximum equals 237%), 10 (median equals 6.45%, 
maximum equals 197%) or 30% (median equals 6.24%, maximum equals 230%) of 
LSOAs and median ARB values are increased by only small amounts. 

The third approach taken in this paper was a similar bottom-up method but to model 
estimates at 100m grid level. Academic work has outlined the potential benefits of 
using geospatial data at much more fine-grained levels of geography. The results 
from this approach, in terms of bias measures at LSOA level, are like the bottom-up 
LSOA approach, most likely because the strength of correlations between geospatial 
data and population at grid and LSOA level are similar. 
 
At grid level, the modelled estimates were generally of a high accuracy when 
compared with the grid-level known census population. However, several grids 



showed very extreme differences between modelled and known population 
estimates. Some of these differences were from estimates that were predicting 
incredibly low (fewer than 5 people) and high (more than double the known census 
estimate) estimates. These extreme differences likely caused some of the more 
extreme ARB measures at LSOA level. Future work will consider the covariate data 
sources and model set-up at the grid level to understand why the models were 
predicting such extreme estimates, given most grids were predicted to a high level of 
accuracy. 
 
The grid-level models were somewhat consistent with the LSOA level models, where 
feature importance was typically higher for the bedroom and room densities. 
However, total address density and total floor area had minimal importance across 
the models. In addition, for some regions, covariates such as night-time lights 
radiance and nitrous oxide concentration had more importance (though not as strong 
as bedroom and room density). For this paper, we made a conscious effort to align 
the covariates used across the three models. However, it may be that each model 
will perform better with unique covariates. This will be considered in the next phases 
of this work. 
 
We may expect the grid-based approach to have outperformed the LSOA level 
bottom-up approach given that, in the grid approach, we trained and predicted grid-
level population estimates for each region separately. The LSOA model, however, did 
not have information about what region the LSOA was from. For completeness we 
re-ran the bottom-up LSOA level approach by running the models for each region 
separately, which led to similar performance in terms of ARB measures to the 
original LSOA bottom-up model.  
 
 Some error will be introduced in the process of aggregating from grid to LSOA, as 
we have split some grids that straddle LSOA boundaries proportionally based on the 
amount of area in each grid “segment”. It is unlikely that this is the most accurate 
approach for partitioning grids as it assumes that the population is evenly distributed 
within the grid, and in some cases, there may be more people living in a smaller 
section of the grid. Alternative approaches to splitting grid estimates could consider 
using address information, splitting grid estimates based on the number of 
addresses, property size, property type, and so on. 
 
As expected, for both the LSOA and grid bottom-up models, the more training data 
fed into the models, the better performance. For example, when the data are trained 
on 70% of areas, median ARBs were around 4% with a maximum ARB less than 
100. A larger training sample would be justifiable in a scenario where we model the 
relationship between geospatial and population data using Census 2021 data, and 
then use that model to predict populations for subsequent years. This approach, 
however, relies on the relationships established during 2021 to maintain over time. 
Should this assumption fail, we will likely see patterns of estimates drifting away from 
the known estimate, outlined in our Rebasing of mid-year population estimates 
following Census 2021, England and Wales bulletin. 
 

https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/rebasingofmidyearpopulationestimatesfollowing/rebasingofmidyearpopulationestimatesfollowingcensus2021englandandwales
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/rebasingofmidyearpopulationestimatesfollowing/rebasingofmidyearpopulationestimatesfollowingcensus2021englandandwales


10. Future direc�on 
Through this work, we have identified several avenues of further work to continue 
developing the geospatial approach. An important step will be to continue the 
development of geospatial covariate data sources. In this paper, we have outlined 
the value in using address data to predict populations. However, more information 
about these addresses could be included. For instance, we could include the type of 
building that each address is (detached, semi-detached, block of flats, etc).  

We could also look to include information about address occupancy, which we 
believe may address some of the issues outlined in Section 8: Results from Bottom-
up model at Grid level, where for some grids address data and usual residence 
occupancy are not correlated. Using additional data sources such as the SPD, or 
utility data (gas, electric, water consumption) may highlight which addresses are 
occupied, and whether those occupants are part of the usually resident population. 

Other geospatial data sources could be considered as useful predictors of small area 
populations. In addition to residential building density, other land use types are likely 
to be strong predictors of population density. For example, convenience retail, leisure 
venues, schools only exist where there is sufficient population to support them. Such 
data can be acquired through the Address Index, which we can use in a similar way 
to how we have mapped residential addresses in this proof of concept. We will also 
consider data such as transport accessibility, which will likely be a strong predictor of 
travel demand and therefore population density.  

In the previous section of the paper, anonymised and aggregated mobile network 
operator data and associated caveats are discussed. While these data may not be 
appropriate for estimating population counts, they may be more suited to measuring 
population change over time. In addition, other datasets can be used to assess 
change at fine spatial granularity, such as the Land Registry transaction data, which 
can provide monthly information of new build residential sales by postcode. These 
types of frequently updated, high spatial granularity data could be used in several 
ways. One, as a sense check between two sets of population estimates to validate 
changes at the LSOA level over time. Another, as an input to measure month-on-
month change from a baseline such as the Census. Further investigation and quality 
assurance of these datasets are required to assess their usage in producing 
population statistics.  
 
In this paper we outlined that the top-down WorldPop method may not work 
sufficiently well for Office for National Statistics (ONS) contexts as the model cannot 
extrapolate beyond the training data. Instead, we could consider alternate modelling 
approaches that are better suited for ONS contexts. One possibility is to use agent-
based modelling approaches. Agent Based Models are widespread in the field of 
transport and mobility modelling. These models estimate individual agents' 
behaviour, and their interactions with other agents and their built environment, such 
as resident and workplace location and travel between activities, such as shopping 
and leisure.  
 
The principles of how agents are assigned to locations, such as home, workplace 
and activities, often referred to as facility sampling, could be applied to small area 



population estimates. This could follow top-down disaggregation approaches, for 
example, assigning a known population at LAD level to LSOAs, grids, or even 
individual buildings, based on demographic characteristics of the population at LAD 
level and the characteristics of the lower-level geography or features.  
 
Alternatively, a bottom-up approach could be applied, where population is estimated 
based on the characteristics of land use, such as building type, and known 
demographic composition of individual areas or area types. This approach may 
produce predictions with lower errors, as the relationships between population and 
geospatial data are modelled at finer spatial granularity, rather than assuming 
relationships are similar across England and Wales. This approach also has the 
benefit of being used for estimating hourly based population estimates, but this 
would require substantial further development.  
 
The models presented show signs of spatial instability. When calculating ARB values 
by region, for LAD, LSOA and grid-level trained models, we tend to see higher ARB 
values in regions with metropolitan areas, such as London, the North West, and the 
West Midlands, and in areas with high population density more generally. These 
areas are characterised by large numbers of flats and shared houses, with most 
households having low occupancy, i.e., containing 1 to 2 individuals. Model 
predictions are distorted by these outliers, suggesting that a focus of improvement 
should be on how to better estimate population in higher density areas. 

By its nature, a random forest model output will differ on each model run. We have 
tested the stability of models by running multiple models using the same input 
covariates. It is worth noting that median ARB values typically change at the second 
decimal place when re-run, but maximum ARB values can change more 
substantially, so these should be used with caution. Further work should consider 
how more stable model estimates are generated using the model applications 
presented in this paper.  
 
As discussed, a substantial limitation with the adoption of a random forest model is 
that these models cannot extrapolate predictions beyond that of their training data. 
Therefore, exploration of alternative machine learning models should be considered. 
This could include experimenting with alternative regression models or, instead, 
ensemble models. Ensemble models combine multiple learning algorithms to make 
their predictions. Since any given learning model has strengths and weaknesses, 
using a combination mitigates the limiting factors of any given one (e.g., an inability 
to extrapolate). Such an approach may also potentially improve on the observed 
spatial instability (discussed above), as some constituent models may perform better 
in areas of high population density, while others perform better in areas of low 
population density (relative to our initial results using random forest).  
 
To assess the suitability of these modelling applications to future population 
estimates, further work is required to understand the temporal stability of model 
predictions. For example, can a model trained on 2021 data, predict 2011 Census 
population to similar levels of accuracy. To achieve this, input covariates need to be 
available or approximated for 2011. This is feasible with the set of covariates 
presented in this paper, as underlying data used for covariates derived from the 
Address Index are available within the ONS going back to 2013 (and alternatives 



available for earlier years from Ordnance Survey). Further work should focus on the 
availability of these covariates and the assessment of temporal stability of modelling 
approaches.  
 
Future applications of this modelling approach can be used to predict the full sample 
of LSOAs where their covariate information has not been used to train the model, 
i.e., a situation where the model is trained using 2021 population and covariate data, 
to predict population for future years, using updated covariate data. 
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