OFF-SEN: Transformation of private rental price statistics: Proposed hedonic regression models

Mike Hardie, Chris Jenkins, Natalie Jones & Aimee North 19/02/2021

Current method (IPHRP)

- 'Matched pairs' method heavily weighted towards a 'stock' measure
- Each January, all data collected within the last 14 months is split 50:50 into a sample pool and a substitution pool
- New data collected each month is compared with the sample
 - If new data for a property in the sample is collected, the price is updated
 - For properties in the sample which have no price update in the latest month, price is carried forward
 - Properties in the latest month's data that are not in the sample pool are sent to the substitution pool
 - Properties in the sample that have not had a price update for 14 months are removed and a comparable replacement is selected from the substitution pool
- Produces index down to region level only

Introduction

Project aim	To use transaction-level price microdata to transform private rental price statistics
Anticipated outputs for publication	 Index, annual rental growth and average rental price timeseries at the following levels: UK Countries English regions Local authorities (3-month average, as published by HPI) Breakdowns at by: Property type (detached, semi-detached, terraced, flat) Bedroom category (studio, 1-bedroom, 2-bedroom, 3-bedroom, 4+ bedroom)
Methodology research	 UK House Price Index (HPI) UK Index of Private Housing Rental Prices (IPHRP) England Private Rental Market Summary Statistics (PRMS)

Property characteristics used to predict rental price

Property characteristic	Source	% categories that are statistically significant (p<0.05)
Number of bedrooms	VOA Council Tax data	100%
Floor area	VOA Council Tax data	100%
Property age	VOA Council Tax data	100%
Local authority	GeoPortal Postcode lookup	98%
Acorn group	ACORN CACI data	100%
Property type	Price microdata (VOA, Welsh Government)	100%
Furnished status	Price microdata (VOA, Welsh Government)	100%

Random forest regression vs general linear model

- GLMs assume there is a linear relationship between price and explanatory variables, whereas random forests do not make this assumption
- Random forests account for non-linearities and interactions between explanatory variables automatically, whereas the analyst must specify this for GLM
- Random forests have many ways to fine-tune (for better predictive performance) and regularise (to prevent overfitting) the model
- Random forests are more of a "black box". GLM outputs regression coefficients which enable analysts to assess the contribution of each variable to the price and better explain a change in the index

Overview

- Last month, ONS presented results from two regression models:
 - WLS without interaction terms
 - Random Forest
- Random forest results looked reasonable, and showed a similar trend to WLS at region and country level
- However, some local authorities showed unrealistic results at LA-level
- APCP-T suggested application of shrinkage to prevent over-fitting and reduce volatility
- Consequently, ONS tested four additional regression models, including the impact of shrinkage

Rejected models

WLS using longitude/latitude instead of LA code with interactions (acorn vs area, type, beds)

Random Forest using longitude/latitude, no shrinkage

WLS using LA with interactions (acorn vs area, type, beds) and shrinkage

Decision: Eliminate these three model options

WLS with longitude/latitude is too simplistic/unrealistic as it models LAs in close proximity the same way

Random Forest without shrinkage is too volatile/unrealistic at LA-level

WLS with shrinkage is almost identical to the model without shrinkage. Without shrinkage model offers more statistical information

Regression models for consideration

Regression models for consideration

- Model 1 Weighted Least Squares without interaction terms
- Model 2 Random Forest with shrinkage
- Model 3 Weighted Least Squares with some interaction terms

Preferred model:

Model 1 – WLS without interactions

- ONS Regression experts recommend random forest (Model 2) as the most suitable model in practice
- However, ONS must balance theory with practicalities: the model must be suitable for use in regular production
- WLS is a more transparent method than random forest easy to explain to users and interpret model outputs
- Model 1 agrees very closely with the random forest
- ONS is concerned Model 3 might not account for all interactions and produces very different results compared with Models 1 & 2
- Model 1 is easier to quality assure data and results than Model 2

London index

Next steps

- Select preferred regression model
 - Originally a general linear model was proposed
 - ONS regression methodology experts recommended switching to a random forest regression model to better account for interactions between variables
 - Six models have been tested; three have been rejected
 - Gather feedback from APCP-T on the three remaining proposed models
- Ratify methodology through ONS Methodology Advisory Committee
- Initiate user consultation period: Spring-Summer 2021
- Publish initial analysis & collect user feedback: Summer-Autumn 2021

Do you have any comments on the three regression models? Which model is your preference?