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Summary 

This paper presents further developments to the computational framework of the Dynamic 
Population Model that is used for estimating Admin-Based Population Estimates. The 
developments presented in the paper address the problem of estimating uncertainty for 
aggregate estimates such as Local Authority or England and Wales population totals. We 
would like to thank all members of the team that have been involved in the development 
and testing of models as well as the critical feedback from collaborators John Bryant 
(Bayesian Demography Ltd.) and the University of Southampton (Professor Peter Smith, 
Professor Jakub Bijak, Dr Jason Hilton, Professor Erengul Dodd, Dr Joanne Ellison, Andrew 
Hind). 

Questions for MARP 
1. Is the proposed modification to the computational framework of the Dynamic 

Population Model sensible? 
2. Do the panel have suggestions for improvements to the coverage adjustment models 

that we are fitting in step 1 that might improve the estimates of uncertainty for 
aggregates? 

3. Do panel members have any thoughts on the need for regular reviews of the step 1 
models and how these should be conducted. 

1 Introduction 

The Dynamic Population Model (DPM) combines estimates of births, deaths, migration and 
different estimates of the population at mid-year points from 2011 to 2023 by Local 
Authority, single year of age and sex to estimate a coherent demographic account 
(population, events and demographic rates) that we refer to as Admin Based Population 
Estimates (ABPEs). The development of the DPM has followed a software-engineering 
project-management approach, first establishing a basic working model, and then 
successively refining it. We have provided updates on developments at previous MARP 
meetings: 

• outlining plans for a Bayesian demographic accounts (Blackwell et al, 2021), 
• the initial computational breakthrough, demonstrating the feasibility of the DPM 

(Blackwell et al, 2022), 
• R package developments and model refinements, publictions and engagement 

activities with LAs (Elliott and Blackwell, 2023), 

https://uksa.statisticsauthority.gov.uk/wp-content/uploads/2022/03/EAP174-Bayesian-Methods-for-Demographic-Estimation.pdf
https://uksa.statisticsauthority.gov.uk/wp-content/uploads/2022/08/EAP179-Demographic-Accounts-MARP-Update.pptx
https://uksa.statisticsauthority.gov.uk/wp-content/uploads/2023/02/EAP193-DPM-progress-report-and-technical-paper.pdf
https://uksa.statisticsauthority.gov.uk/wp-content/uploads/2023/02/EAP193-DPM-progress-report-and-technical-paper.pdf


• faster estimation methods (Merad et al, 2024). 

In this paper we provide a summary of the work to date on modifications to the 
computational framework of the DPM to improve estimates of uncertainty, in particular for 
aggregates such as Local Authority or England and Wales population totals. 

In the papers listed above we have described the justification of using different steps in the 
DPM to make the computation feasible. Here we focus only on the first (initial adjustment 
for bias in observed data and estimation of demographic rates) and second (cohort 
estimation) steps. In Section 2 we describe the objective in producing ABPEs and explain 
the limitations in the approach we have been using in publications to date in calculating 
uncertainty in our estimates. 

To obtain improved uncertainty we have proposed a multiple draws approach which 
involves fitting the cohort estimation step of the DPM multiple times using draws of certain 
hyperparameters estimated in step 1. Using the multiple draws approach, estimates of 
aggregate uncertainty (aggregating cells after step 2) are sensitive to the models specified 
in step 1. 

In Section 3 we summarise the models that have been used in publications to date and 
briefly describe the models we have been exploring that aim to improve estimates of 
aggregate uncertainty (technical specifications of these models are provided for 
information in section Section 7). In the context of usual models in statistical demography 
we are exploring unusually large models (hundreds of thousands of parameters). These are 
being reviewed internally for quality assurance and user acceptance testing, as well as 
through reviews and discussions with external academics supporting the project. This is 
also proposed as a topic for discussion at the MARP subgroup that is being formed for the 
DPM. 

Section 4 briefly outlines the multiple draw approach that is proposed for step 2 to 
approximate the posterior distribution of interest. Section 5 presents results for some 
example step 1 models and the impact on aggregate uncertainty after step 2, while 
Section 6 summarises the discussion. 

2 DPM 

The main objective is to estimate the components of an unobserved demographic account 
(𝑥𝑥), including demographic rates (𝛾𝛾) and parameters that address bias (𝜌𝜌) in the observed 
data (𝑦𝑦). Hence we wish to produce draws from the target distribution 

𝑝𝑝(𝑥𝑥, 𝜌𝜌,𝛾𝛾|𝑦𝑦) = 𝑝𝑝(𝜌𝜌,𝛾𝛾|𝑥𝑥,𝑦𝑦)𝑝𝑝(𝑥𝑥|𝑦𝑦)                       (1) 

  

Let 𝜙𝜙 and 𝜓𝜓 be hyperparameters of initial models for 𝛾𝛾 and 𝜌𝜌 respectively (see section 
Section 3 for further details). We can write 

𝑝𝑝(𝑥𝑥|𝑦𝑦) = ∫ 𝑝𝑝(𝑥𝑥|𝑦𝑦,𝜙𝜙,𝜓𝜓)𝑝𝑝(𝜙𝜙,𝜓𝜓|𝑦𝑦)𝑑𝑑𝜙𝜙𝑑𝑑𝜓𝜓                       (2) 

 

https://uksa.statisticsauthority.gov.uk/wp-content/uploads/2024/10/EAP209-Evaluation-of-TMB-using-a-simulation-study.pdf


  

In the current implementation of the model we approximate the true distribution by 
conditioning on point estimates 𝜙𝜙� and 𝜓𝜓�, that is we use 

𝑝𝑝(𝑥𝑥|𝑦𝑦) = 𝑝𝑝�𝑥𝑥|𝑦𝑦,𝜙𝜙�,𝜓𝜓��                    (3) 

  

This approach provides good annual point estimates by single year of age, sex, and local 
authority, as well as aggregates such as LA totals, but credible intervals are underestimated 
and severely so for aggregates such as LA totals. The reason for this is that the estimation 
does not account for correlations between cells (defined by year, single year of age, sex, and 
LA) in both 𝜙𝜙 and 𝜓𝜓. 

To address this we propose to approximate the true distribution as 

        ∫ 𝑝𝑝(𝑥𝑥|𝑦𝑦,𝜙𝜙,𝜓𝜓)𝑑𝑑𝜙𝜙𝑑𝑑𝜓𝜓 ≈ 1
𝑀𝑀
∑ 𝑝𝑝𝑀𝑀
𝑚𝑚=1 �𝑥𝑥|𝑦𝑦,𝜙𝜙(𝑚𝑚),𝜓𝜓(𝑚𝑚)�           (4) 

  

where 𝜙𝜙(𝑚𝑚) and 𝜓𝜓(𝑚𝑚), 𝑚𝑚 = 1, … ,𝑀𝑀, are 𝑀𝑀 draws from the distribution of the 
hyperparameters 𝜙𝜙 and 𝜓𝜓 from step 1. Note that we take a sample of size 𝐽𝐽/𝑀𝑀 from 
𝑝𝑝�𝑥𝑥|𝑦𝑦,𝜙𝜙(𝑚𝑚),𝜓𝜓(𝑚𝑚)� for the estimates of the demographic account, see the diagram in 
Section 3. 

Individual cohorts (𝑐𝑐) are independent conditional on the hyperparameters so 

        𝑝𝑝�𝑥𝑥|𝑦𝑦,𝜙𝜙(𝑚𝑚),𝜓𝜓(𝑚𝑚)� = ∏ 𝑝𝑝𝑐𝑐 �𝑥𝑥𝑐𝑐|𝑦𝑦𝑐𝑐 ,𝜙𝜙𝑐𝑐
(𝑚𝑚),𝜓𝜓𝑐𝑐

(𝑚𝑚)�                   (5) 

  

In terms of the computation, we describe step 1 as models used for the initial estimation of 
𝜙𝜙 and 𝜓𝜓, whereas as step 2 is the estimation of a consistent demographic account over time 
for a single cohort. 

3 Step 1 models (𝝓𝝓 and 𝝍𝝍) 

In our previous papers listed in Section 1 we have distinguished between data models 
(accounting for bias and precision of observed data) and system models (estimation of 
demographic rates). Note that 𝜙𝜙 correspond to hyperparameters for system models and 𝜓𝜓 
are hyperparameters for data models. 

In publications to date the estimation of the expected values, 𝜙𝜙� and 𝜓𝜓�, has used generalised 
additive models. However, the way in which they have been estimated does not capture 
well correlations across all cells within England and Wales. We briefly discuss the main 
issues with the estimation for these data and system model hyperparameters and describe 
the models being explored to improve their estimation. 



3.1 Data model hyperparameters (𝝍𝝍) 

The current models for 𝜓𝜓 are fit to clusters of LAs and use parametric bootstrapping to 
produce estimates of uncertainty. This approach was developed to produce approximate 
uncertainty intervals for admin-based population estimates by Local Authority, single year 
of age and sex (ONS, 2020). The main problem with this approach is that it was not 
designed for aggregate estimates and unfortunately leads to very high correlations for all 
pairs of cells. Moreover, there is no accounting for changes over time as the model is fit on 
data from a single year. For example, the Patient Register estimates coverage ratios using 
2011 data only, while the Statistical Population Dataset uses 2021 data only. 

To address these limitations we have been exploring hierarchical models that are fit to all 
data in England and Wales from 2011 to the present. These models include covariates that 
involve age, time, sex and region to obtain draws 𝜓𝜓(𝑚𝑚) that can better capture correlations, 
leading to improved estimates of uncertainty from step 2. Note that the data to fit the 
models is restricted because benchmark estimates for these models are only available in 
2011 and 2021, where we make use of mid-year estimates from census years, and we make 
the assumption that they are unbiased. 

3.2 System model hyperparameters (𝝓𝝓) 

The current models for 𝜙𝜙 are fit independently by LA and sex and hence do not capture 
correlation between LAs or sexes. Similarly to the models being explored for 𝜓𝜓 we are 
exploring hierarchical model that are fit to all data in England and Wales from 2012 to 
present, including covariates that involve age, time, sex and region. 

Note that the exposure terms in the system models for birth, deaths and outflows are 
calculated using expected coverage adjusted estimates. Potentially we could use 𝜓𝜓(𝑚𝑚), and 
run the models 𝑀𝑀 times, but this becomes very computationally expensive for negligible 
effects on the resulting 𝜙𝜙(𝑚𝑚) and therefore we use 𝜓𝜓�. 

4 Step 2 cohort estimation 

In step 2 we calculate estimates for each of the 𝑀𝑀 draws of the hyperparameters from Step 
1. Step 2 involves estimation by individual annual birth cohort (for each Local Authority 
and sex combination). 

In Step 2, for each 𝑚𝑚 = 1,⋯ ,𝑀𝑀, we obtain 𝐽𝐽/𝑀𝑀 draws from  

                  𝑝𝑝�𝑥𝑥stk, 𝑥𝑥mig, 𝛾𝛾, 𝜌𝜌|𝜙𝜙(𝑚𝑚),𝜓𝜓(𝑚𝑚),𝑦𝑦�                  (6) 

  

We concatenate the resulting 𝑀𝑀 sets of draws, to obtain a total of 𝐽𝐽 approximate draws 
from 𝑝𝑝(𝑥𝑥, 𝜌𝜌,𝛾𝛾|𝑦𝑦) with structure 

https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/methodologies/indicativeuncertaintyintervalsfortheadminbasedpopulationestimatesjuly2020


𝑥𝑥(1,1) 𝛾𝛾(1,1) 𝜌𝜌(1,1)

⋮ ⋮ ⋮
𝑥𝑥(𝐽𝐽/𝑀𝑀,1) 𝛾𝛾(𝐽𝐽/𝑀𝑀,1) 𝜌𝜌(𝐽𝐽/𝑀𝑀,1)

𝑥𝑥(1,2) 𝛾𝛾(1,2) 𝜌𝜌(1,2)

⋮ ⋮ ⋮
𝑥𝑥(𝐽𝐽/𝑀𝑀,𝑀𝑀) 𝛾𝛾(𝐽𝐽/𝑀𝑀,𝑀𝑀) 𝜌𝜌(𝐽𝐽/𝑀𝑀,𝑀𝑀).

 

  

We are testing alternative values of 𝑀𝑀 and 𝐽𝐽 to ensure that we get at good representation of 
the posterior distribution while ensuring that the computation time is reasonable for 
research and production purposes. 

These concatenated sets of draws for every cell (with cells being defined by the unique 
combinations of single year of age, sex, LA, time and cohort) can be aggregated across some 
dimensions for each draw and from these we then calculate point estimates and credible 
intervals. 

Let 𝐷𝐷 be a sub-population group that comprises cells 𝑖𝑖1,⋯ , 𝑖𝑖𝐾𝐾 . To obtain the 95% credible 
interval of the population estimate for domain 𝐷𝐷 we compute the 2.5 and 97.5 percentiles 
of ∑ 𝑥𝑥𝑖𝑖𝑘𝑘

stk(1,1)𝑘𝑘=𝐾𝐾
𝑘𝑘=1 ,⋯ ,∑ 𝑥𝑥𝑖𝑖𝑘𝑘

stk(𝐽𝐽/𝑀𝑀,𝑀𝑀)𝑘𝑘=𝐾𝐾
𝑘𝑘=1 . 

The ABPEs in the Population estimates for England and Wales: mid-2023 publication 
included point estimates and 95% credible intervals for cells defined by single year of age, 
sex, LA and time. Point estimates and 95% credible intervals for LA population totals were 
also derived using a limited multiple draws approach. 

The reason for describing this as a limited multiple draws approach is that, as discussed in 
Section 3, the step 1 models for 𝜙𝜙 and 𝜓𝜓 may not appropriately capture correlations for 
calculating uncertainty for estimates at any level of aggregation. 

5 Results 

In this section we present some results that demonstrate the impact of the models we have 
been testing to estimate coverage ratios (ie 𝜌𝜌 which are a component of 𝜓𝜓) for the stock 
data in step 1 and the results of using the multiple draws approach at step 2. The full step 1 
coverage ratio model specifications, including priors, are provided in Section 7. Below we 
focus on the differences between the models in terms of variables included (ie model 2 is a 
nested version of model 1 and model 3 is a nested version of model 2). Note that the priors 
for terms included in models do not change. 

Let cell 𝑖𝑖 denote a combination of age 𝑎𝑎 by sex 𝑠𝑠 by LA 𝑟𝑟 by time 𝑡𝑡. We observe 𝑦𝑦𝑖𝑖  (SPD 
population estimate) for all cells, but only observe Census year mid-year estimates (𝑦𝑦𝑖𝑖MYE) 
at 𝑡𝑡 = 2011,2021). 

Model 1 is    

                            𝑦𝑦𝑖𝑖 ∼ Poisson�ρ𝑖𝑖𝑦𝑦𝑖𝑖MYE�                           (7) 

https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/populationestimatesforenglandandwales/mid2023#comparison-with-admin-based-population-estimates-published-in-july-2024


                         ρ𝑖𝑖 ∼ Gamma(ξ−1, (ξμ𝑖𝑖)−1)                         (8) 

logμ𝑖𝑖 = β𝑖𝑖
Intercept + β𝑎𝑎𝑖𝑖

age + β𝑟𝑟𝑖𝑖
region + β𝑠𝑠𝑖𝑖

sex + 

                                                                β(𝑎𝑎,𝑠𝑠)𝑖𝑖
age:sex + β(𝑎𝑎,𝑟𝑟)𝑖𝑖

age:region + β(𝑠𝑠,𝑟𝑟)𝑖𝑖
sex:region + 

                                    β(𝑡𝑡,𝑟𝑟)𝑖𝑖
time:region + β(𝑡𝑡,𝑎𝑎)𝑖𝑖

time:age + β(𝑡𝑡,𝑠𝑠)𝑖𝑖
time:sex                     (9) 

  

where 𝛽𝛽 and 𝜉𝜉 are parameters to be estimated in the model. We require the posterior 
distribution of 𝜌𝜌 for the multiple draws approach in step 2. 

Model 2 excludes the terms 𝛽𝛽(𝑡𝑡,𝑎𝑎)𝑖𝑖
time:age,𝛽𝛽(𝑡𝑡,𝑠𝑠)𝑖𝑖

time:sex and then model 3 further excludes 
𝛽𝛽𝑎𝑎𝑖𝑖

age,𝛽𝛽𝑟𝑟𝑖𝑖
region,𝛽𝛽𝑠𝑠𝑖𝑖

sex. 

We have evaluated these models: one of the validation results has been to compute in-
sample and out-of-sample coverage. These are calculated by randomly setting 10% of 
observed SPD estimates to missing for model fitting. We then predict those missing values 
based on the model and report the percentage of observed values that fall within the 95% 
credible intervals of the predicted counts. As can be seen in Table 1, there is little difference 
between these models. The in-sample percentage is about right in 2011 but too high in 
2021. For the out-of-sample the 2021 coverage is reasonable but slightly low in 2011. 

Table 1: In- and out-of-sample coverage for selected coverage ratio models for SPD. 

Model Year In_sample Out_sample 
Model 1 2011 0.953 0.891 
Model 1 2021 0.991 0.970 
Model 2 2011 0.954 0.887 
Model 2 2021 0.987 0.966 
Model 3 2011 0.953 0.892 
Model 3 2021 0.988 0.966 

 

A second validation of these models involved computing the coefficient of variation of the 
coverage adjusted estimates at the England and Wales level obtained using draws from the 
posterior distribution of the coverage ratios 𝜌𝜌. It is clear from Table 2 that model 1, that 
includes terms for age by time 𝛽𝛽(𝑡𝑡,𝑎𝑎)𝑖𝑖

time:age and sex by time 𝛽𝛽(𝑡𝑡,𝑠𝑠)𝑖𝑖
time:sex covariates, has much lower 

precision, with coefficients of variation about 20 times higher than those of models 2 and 3. 

 

 

 



Table 2: Estimated coefficients of variation for England & Wales level coverage adjusted SPD 
estimates 

Year Model1 Model2 Model3 
2016 3.141 0.164 0.180 
2017 2.967 0.155 0.143 
2018 2.899 0.141 0.134 
2019 2.537 0.131 0.115 
2020 2.044 0.097 0.103 
2022 1.878 0.099 0.093 
2023 2.602 0.138 0.133 

 

Given the poor precision from model 1, we have tested step 2 estimation with draws from 
model 3, on the basis that it is more precise than model 1 and while similar to model 2 it 
can be fitted faster. 

We now briefly present some results from running step 2, focussing on Local Authority, 
and England and Wales population totals. In order to demonstrate the importance of using 
the multiple draws approach for estimating aggregate uncertainty, we show the 95% 
credible intervals derived from using a single run and multiple runs for two Local 
Authorities. As can be seen in Figure 1 the credible intervals are wider for the multiple 
draws approach, that is a result of capturing correlations between cohorts, that are not 
accounted for in the single run approach. 

 

Figure 1: Population estimates for Blackpool (left) and Cambridge (right) with 95% credible 
intervals 



Figure 2 shows boxplots of the the estimated coeffificents of variation for Local Authority 
level estimates of population over time for both the coverage adjusted inputs (ie the results 
of step 1 that are passed to step 2) and the estimates after running step 2 using the 
multiple draws approach. As can be seen, the precision is slightly increased in 2011 and 
2021 after step 2. We expect the precision to only improve slightly as the mid-year 
estimates from census years are assumed to be precise relative to the other stock data. The 
precision of the coverage adjusted inputs increases the further away from a Census year, 
and Patient Register data (2012 to 2015) is slightly less precise than SPD (2016 to 2020 
and 2022 to 2023). As would be expected, the more precise population estimates after step 
2 are obtained for the years 2011 and 2021, while in those years further from census years 
the precision reduces. 

 

Figure 2: Estimated coefficients of variation (%) of Local Authority level estimates of 
population 

At the England and Wales level we observe a similar pattern, as shown in Figure 3, except 
that the coefficient of variation for the DPM estimate after step 2 (multiple runs) for 2021 is 
greater than those for a number of other years, which is not what we would expect. We 
believe that this is a sign the coverage ratio models may not be sufficiently accounting for 
correlations between regions. 



 

Figure 3: Estimated coefficients of variation (%) of England and Wales level estimates of 
population 

6 Discussion 

We believe that the multiple draws approach is an important development of the DPM that 
allows us to produce reasonably accurate estimates of uncertainty at aggregate levels. The 
results that we have presented show plausible estimates of uncertainty for Local Authority 
population totals. However, it appears that the coverage ratio models are perhaps not 
appropriately capturing regional correlation, which leads to England and Wales level 
estimates of uncertainty that are less plausible. 

An important practical consideration for a regular production cycle is the issue of revisions. 
Clearly as new data arrives or historical data is revised, potentially causing structural 
changes, it will be important to review and potentially modify the step 1 hierarchical model 
specifications. We would be interested to hear panel members opinions on the necessity of 
this and how such reviews of the models might be conducted. 

The hierarchical models that have been presented to use for coverage adjustment of the 
population stock data are a necessary part of the estimation as we do not have an 
alternative coverage adjustment method for these periods. These models will need to be 
modified appropriately when new coverage adjustment methods are developed. 
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7 Technical appendix 
• Cell 𝑖𝑖 is defined as a combination of age 𝑎𝑎 by sex 𝑠𝑠 by LA 𝑟𝑟 by time 𝑡𝑡. 
• 𝑦𝑦𝑖𝑖: SPD population estimate for cell 𝑖𝑖. 
• 𝑦𝑦𝑖𝑖MYE: MYE population for cell 𝑖𝑖 (observed only at 𝑡𝑡 = 2011,2021). 
• 𝛽𝛽, 𝜏𝜏, and 𝜉𝜉 are parameters to be estimated in the model. 
• We require the posterior distribution of 𝜌𝜌 for the multiple draws approach in step 2. 

The coverage ratio Model 1 is specified as 

𝑦𝑦𝑖𝑖 ∼ Poisson�𝜌𝜌𝑖𝑖𝑦𝑦𝑖𝑖MYE� 

𝜌𝜌𝑖𝑖 ∼ Gamma(𝜉𝜉−1, (𝜉𝜉𝜇𝜇𝑖𝑖)−1) 

log𝜇𝜇𝑖𝑖 = 𝛽𝛽𝑖𝑖
Intercept + 𝛽𝛽𝑎𝑎𝑖𝑖

age + 𝛽𝛽𝑟𝑟𝑖𝑖
region + 𝛽𝛽𝑠𝑠𝑖𝑖

sex + 

𝛽𝛽(𝑎𝑎,𝑠𝑠)𝑖𝑖
age:sex + 𝛽𝛽(𝑎𝑎,𝑟𝑟)𝑖𝑖

age:region + 𝛽𝛽(𝑠𝑠,𝑟𝑟)𝑖𝑖
sex:region + 
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time:age + 𝛽𝛽(𝑡𝑡,𝑠𝑠)𝑖𝑖
time:sex 

 

With priors: 

βIntercept ∼ N(0,102) 

β𝑎𝑎
age ∼ N�β𝑎𝑎−1

age , τage
2 �,  𝑎𝑎 = 1, … 105 

1
106 � β𝑎𝑎

age
𝑎𝑎=105

𝑎𝑎=0

∼ N(0,1) 

τage
2 ∼ N+(0,1) 

β𝑑𝑑sex ∼ N(0,1),  𝑠𝑠 = Female,Male 

β𝑟𝑟
region ∼ N�0, τregion

2 �,  𝑟𝑟 = 𝐿𝐿𝐴𝐴1, … , 𝐿𝐿𝐴𝐴318 

τregion
2 ∼ N+(0,1) 

β𝑎𝑎,𝑠𝑠
age:sex ∼ N�β𝑎𝑎−1,𝑠𝑠

age:sex , τage:sex
2 �,  𝑠𝑠 = Female,Male,  𝑎𝑎 = 1, … 105 

1
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age:sex
𝑎𝑎=105

𝑎𝑎=0

∼ N(0,1),  𝑠𝑠 = Female,Male 

τage:sex
2 ∼ N+(0,1) 

β𝑎𝑎,𝑟𝑟
age:region ∼ N�β𝑎𝑎−1,𝑟𝑟

age:region, τage:region
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τage:region
2 ∼ N+(0,1) 

β𝑠𝑠,𝑟𝑟
sex:region ∼ N�0, τsex:region

2 �,  𝑠𝑠 = Female,Male,  𝑟𝑟 = 𝐿𝐿𝐴𝐴1, … , 𝐿𝐿𝐴𝐴318  

τsex:region
2 ∼ N+(0,1) 

β𝑡𝑡,𝑟𝑟
time:region ∼ N�β𝑡𝑡−1,𝑟𝑟

time:region, τtime:region
2 �,  𝑟𝑟 = 𝐿𝐿𝐴𝐴1, … ,𝐿𝐿𝐴𝐴318,  𝑡𝑡 = 2012, … ,2023 

1
13 � β𝑡𝑡,𝑟𝑟

time:region
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𝑡𝑡=2011

∼ N(0,1),  𝑟𝑟 = 𝐿𝐿𝐴𝐴1, … , 𝐿𝐿𝐴𝐴318  
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2 ∼ N+(0,1) 



β𝑡𝑡,𝑎𝑎
time:age ∼ N�β𝑡𝑡−1,𝑎𝑎

time:age, τtime:age
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1
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time:age
𝑡𝑡=2023

𝑡𝑡=2011

∼ N(0,1),  𝑎𝑎 = 0, … ,105 

τtime:age
2 ∼ N+(0,1) 

β𝑡𝑡,𝑠𝑠
time:sex ∼ N�β𝑡𝑡−1,𝑠𝑠

time:sex, τtime:sex
2 �,  𝑠𝑠 = Female,Male,  𝑡𝑡 = 2012, … ,2023 

1
13 � β𝑡𝑡,𝑠𝑠

time:sex
𝑡𝑡=2023

𝑡𝑡=2011

∼ N(0,1),  𝑠𝑠 = Female,Male 

τtime:sex
2 ∼ N+(0,1) 

𝑝𝑝(ξ) =
1

2�ξ
𝑒𝑒−�ξ 

  


	Summary
	Questions for MARP
	1 Introduction
	2 DPM
	3 Step 1 models (𝝓 and 𝝍)
	3.1 Data model hyperparameters (𝝍)
	3.2 System model hyperparameters (𝝓)

	4 Step 2 cohort estimation
	5 Results
	6 Discussion
	References
	7 Technical appendix

